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Paired long- and short-
read metagenomics of
cheese rind microbial
communities at multiple
time points

How do you approach getting a microbiome set up in a new lab?
We're sharing protocols for how we collected, stocked, and
sequenced a set of cheese rind microbiomes and generated a high-
quality metagenomics resource for future computational studies.
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Purpose

This collection of high-quality short- and long-read, time series sequencing data sets
should serve as a valuable community resource for bridging observational and
experimental work, for developing metagenomic analysis pipelines, and for

understanding cheese rind microbial communities.
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- Data from this pub, including raw reads and assembilies, is accessible in the

European Nucleotide Archive (ENA). Taxonomic and functional analysis is available

on MGhnify.

. Step-by-step protocols are available as a collection on protocols.io.

« Code and data tables used to produce visualizations are available in this GitHub

repository.

We’ve put this effort on ice! X

#HStrategicMisalignment

As we explored microbial communities during our first ~year as a company, we
refined our strategy and realized that we don’t want to divide ourselves along the
lines of standard scientific disciplines. Rather than pursuing “microbiology” in a
traditional sense, we're now taking a broader-scale computational approach to
identify potential evolutionary innovation in any organism, and then follow up.
Thus, while we may return to metagenomic techniques in the future, we've
stopped working on this particular project.

Learn more about the Icebox and the different reasons we ice projects.

Background and goals

One of the biggest challenges in coupling community-level observations to
mechanistic understanding of microbiomes is figuring out how to bring microbial
communities into the lab. Here, we demonstrate an example of how we went about
“onboarding” a new microbial community at Arcadia. Our goal was to proactively
consider aspects of a new community that could be informative and to stock samples
so that future work would not be hindered by a lack of access to material. We decided
that in addition to generating glycerol stocks of the communities for future community
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growth experiments or microbial isolation, it would be helpful to stock samples for
future mass spectrometry, spatial imaging, viral DNA extraction and phage isolation,
proximity ligation Hi-C libraries, metagenomics, and metatranscriptomics.

Based on in-house expertise, we selected five microbial communities growing on
washed-rind cheeses as the first communities to onboard at Arcadia (Figure 1). Cheese
rinds are a validated and stable experimental platform for microbial community
research [11[2]1[31[4]. As part of our initial characterization of these communities, we
also produced high-quality short- and long-read metagenomic time series sequencing
data and assembilies, including whole-genome amplification sequencing for some
samples. Comparison of native DNA to amplified DNA can facilitate discovery of DNA
modifications [5].

Alongside this pub, we have provided a collection of protocols for onboarding this

microbial community, including protocols for sample collection, DNA extraction, and
virome harvest. We also generated glycerol stocks for all of the cheeses used in these
experiments that we'd be happy to make available to others for downstream uses like
isolating individual strains or building culture collections.

While we have shifted direction and no longer plan to use these data sets for the time
being, we hope that these protocols will be helpful to others who want to bring a
microbial community into the lab. The data sets should be useful for metagenomic
data mining and development of metagenomic analysis software, investigating DNA
modifications, and learning about microbial communities of cheese.

SHOW ME THE DATA: Access our metagenomic sequencing data, including raw

reads and assemblies. See MGnify for taxonomic and functional analysis.
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Cheese

Figure 1

The five washed-rind cheeses that we

sampled for this study.

Cheese names are abbreviated for simplicity. W:

weeks, M: months

The approach

Code and data tables to produce figures for this pub are available in this GitHub
repository (DOI: 10.5281/zenodo.7710287).

Briefly, we extracted DNA from five cheese rind communities, including their viral
components (Figure 1). We then used short-read lllumina sequencing and long-read
Nanopore sequencing (with and without whole-genome amplification) to characterize
the microbes present in the full communities. Long-read sequencing can improve the


https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1
https://github.com/Arcadia-Science/metagenomics-of-cheese-rind-microbiomes/releases/tag/v1.1
https://doi.org/10.5281/zenodo.7710287

quality of metagenomic assemblies. We sequenced multiple time points to capture the
succession of microbes throughout the aging process. We then used the long-read
sequencing data to predict circular contigs in the metagenomic assemblies. See

detailed methods below or skip to the results.

TRY IT: You can find detailed, step-by-step protocols in this collection on

protocols.io.

Sampling and DNA extraction

We sampled rinds from five distinct washed-rind cheeses aged in a cave facility in
Vermont, USA as described in our “Harvesting_and stocking cheese rind community

samples” protocol, available on protocols.io. For simplicity, we have assigned each
cheese an abbreviated name (Table 1). We selected three different time points in aging
from each cheese, and used a subset of those samples for metagenomic sequencing.
We made glycerol stocks for all the cheeses for possible downstream use for culture
collection, as described in the protocol. WH 2M and WH 2M Hous are the same
cheese style but were separate wheels that we sampled at different times. We
performed DNA extraction from these samples as described in our “High-molecular-

weight DNA extraction from cheese rind microbial communities” protocol.

Cheese Age of sequenced samples | Full aging time of cheese
El 2 weeks, 1 month, 3 months 2-3 months
oM 2 weeks, 1 month, 2 months 2.5-3.5 months
Wi 3 weeks 1.5-3 months
AL 4 months 8-12 months
WH 1 month, 2 months, 4 months 3-6 months
WH Hous | 2 months 3-6 months
Table 1

Age of sequenced samples for the five cheeses.
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Virome harvesting and DNA extraction

In parallel to harvesting and analyzing the full cheese rind microbial community, we
also developed protocols to specifically harvest and analyze the viral component (the
virome). We made concentrated virome extracts from the cheese rind samples, from
which we extracted DNA and made glycerol freezer stocks. For full, step-by-step
instructions, see our “Virome harvesting_from cheese microbiomes” and “Virome DNA

extraction with phenol-chloroform” protocols on protocols.io.

ONT long-read sequencing

We size-selected DNA samples from AL 4M, WH 2M, WH 2M Hous using this protocol
from Oxford Nanopore Technologies (ONT) prior to ONT library preparation to enrich
for fragments > 2 kb. Note that you need to make a free Nanopore Community account
to view ONT protocols. We size-selected DNA samples from OM 2W, OM 8W, EL 2W,
EL 12W, WH 1M, WH 4M using this protocol from ONT prior to ONT library preparation
to enrich for fragments > 10 kb. For whole-genome amplified libraries (OM 4W WGA,
EL 4W WGA, WH 2M WGA), we used the same DNA sample we used for native
sequencing as the input into this protocol from ONT. We used 20 ng of DNA as input
for ampilification. For AL 4M, WH 2M, WH 2M Hous, OM 4W, EL 4W, and WI 3W, we
loaded 10 fmol of library, assuming a size of 35 kb. For OM 2W, OM 8W, EL 2W, EL 12W,
WH 1M, WH 4M, OM 4W WGA, WH 2M WGA, EI 4W WGA, we loaded 10 fmol of library
onto the flow cell, assuming 10 kb average length. We prepared libraries for OM 2W, EL
2W, and WH 1M with SQK-LSK114 and ran them on R10.4.1 flow cells (one full cell per
sample); we prepared all other libraries with SQK-LSK112 and ran them on R10.4 flow
cells (one full cell per sample). We sequenced until pores no longer showed activity
(~72 h, although the maijority of pores were no longer active after 40 h). We used the
Gridlon for sequencing and live base calling using the super-accurate base calling
configuration and the following software versions: MinKNOW 22.08.6, Bream 7.2.8,
Configuration 5.2.5, Guppy 6.2.7, and MinKNOW Core 5.2.2. We set the minimum read
length to 1,000 bp and toggled read splitting on. For a summary of how we sequenced

DNA from which cheeses, see Table 2 below.
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lllumina short-read sequencing

We sent the same DNA extractions that we used as input for size selection prior to
ONT sequencing to Novogene for lllumina library preparation and sequencing. We
requested 16 G of raw data per sample. Novogene performed paired-end 150 bp
sequencing on an lllumina NovaSeq 6000. The cheese samples from which we
Illumina-sequenced DNA are summarized in Table 2.

Native ONT | WGAONT | lllumina

oM 2w X X
oM 4w X X X
oM 8W X X
EL 2W X X
EL 4W X X X
EL12W X X
WH 1M X X
WH 2M X X X
WH 4M X X
AL 4M X

WH 2M Hous | x

Wi 3W X

Table 2

Summary of metagenomic sequencing work.

Each column represents a single DNA extraction sample. Rows represent
sequencing techniques and an ‘X’ means we applied this technique to the
sample in this column. The final two characters of the sample name designate
the aging time of the cheese (W: weeks, M: months). ONT: Oxford Nanopore
Technologies, WGA: whole-genome amplification. WH 2M and WH 2M Hous are
samples from the same cheese style at approximately the same aging time

point, but were separate wheels that we sampled at different times.



Metagenomic assembly of long-read
sequencing data

We concatenated all FASTQ files with “passed” reads (quality score > 10) together and
trimmed adapters using Porechop_ABI 0.5.1 [6] and Python 3.8. We put trimmed reads
into metaFlye 2.9.1-b1780 [7] using the --nano-hg and --meta flags. We polished the
assemblies with medaka 1.7.2 using BCFtools 1.14, bgzip 1.14, minimap2 2.17, SAMtools
1.14, and tabix 1.14. We obtained assembly statistics from the metaFlye output log and
obtained read statistics from the ONT reports produced during sequencing.

Metagenomic assembly of short-read
sequencing data

For each sample, we quality-filtered Illumina paired reads with fastp 0.23.2 [8] using
the --cut_front --cut_tail --cut_mean_quality 15 -q 15 and keep_phix false
flags. We assembled filtered reads with metaSPAdes 3.15.3/Python 3.9.6. We obtained
assembly statistics using the QUAST web interface [9] and Novogene provided read

statistics.

Code and data tables to produce figures for this pub are available in this GitHub
repository (DOI: 10.5281/zenodo.7710287).

Sourmash and sourmashconsumr analysis

We used sourmash version 4.6.1 to compare all of the metagenomic assemblies and to
look at the taxonomic composition of the WH, OM, and EL lllumina metagenomic time-
series data [10]. We used the sourmash sketch dna command with -p flags

k=31, scaled=1000 to make signatures for all metagenomic assemblies. We then used
the sourmash compare command to make a similarity matrix for the assemblies. We
used the sourmash sketch dna command with -p flags k=31,scaled=1666,abund to
make signatures for paired-end lllumina read files. We used the sourmash gather
command with -k 31 and --scaled 1000 options for each of the nine signatures.
For sourmash gather , we used the pre-prepared sourmash GenBank genomes from
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March 2022 k31 databases for viruses, bacteria, archaea, protozoa, and fungi, plus the
custom cheesegenomes-k31-scaledik database.We then usedthe sourmash tax
annotate command on the resulting gather files with the taxonomy sheets for these
six databases. This resulted in nine sr.with-lineages.csv files. We then used the
sourmashconsumr package [11] to make time-series alluvial plots.

Data deposition

We deposited raw lllumina and Nanopore reads (FASTS and FASTQ files) and their
corresponding metagenomic assemblies in the ENA (project PRUEB58160). We also
requested MGnify analysis for the deposited data through the MGnify webpage. The
resulting analysis is available here (study MGYSO0006097).

The results

SHOW ME THE DATA: Access our metagenomic sequencing_data, including raw

reads and assemblies. See MGnify for taxonomic and functional analysis.

To generate reference metagenomic data sets for this microbiome, we generated
separate assemblies based on long- or short-read data.
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Depth of lllumina sequencing
per sample.
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Figure 3

ONT long-read sequencing statistics.
(A) Number of reads collected per sample.
(B) N50 of ONT reads per sample.

WGA: Whole-genome amplification. “WH 2M” and
“WH 2M Hous” are samples from the same
cheese style at approximately the same aging
time point, but were separate wheels that we
sampled at different times.

For lllumina short-read 150 bp PE sequencing, the average sequencing depth was 119
million reads per sample (Figure 2). For ONT long-read sequencing, the average depth
was around 1.2 million reads per sample, with an average N50 of 5.8 kb (Figure 3).




— 40,000
o)
= 150 @
% 2 30,000
c | =
) 8
- 100 =
=] © 20,000
£ )
) :
w
Y 50 2 10,000
]
°
=
0 0
EL EL EL OM OM OM WH WH WH EL EL EL OM OM OM WH WH WH
W AW 12W 2W 4W SW IM 2M 4M 2W AW 12W 2W 4W BW 1M 2M 4M
Sample Sample
15 40,000
)
= 30,000
o 1 -
= =
S a
o o 20,000
z 2
9 05
10,000
]
0 0
EL EL EL OM OM OM WH WH WH EL EL EL OM OM OM WH WH WH
2W AW 12W 2W AW 8W IM 2M 4M QW AW 12W 2W AW BW 1M 2M 4M
Sample Sample
Figure 4

Metagenomic assembly statistics from short-read
assemblies.

(A) Total length of the assembly per sample.
(B) Number of contigs per sample.
(C) Longest contig per sample.

(D) N50 of contigs per sample.

The lllumina metagenomic assemblies were an average of 1.5 times larger than the
Gridlon assemblies of the same DNA sample, with 7.5 times the number of contigs
(Figure 4 and Figure 5). The N50 of the lllumina assemblies was 19.6 kb on average,
whereas the N50 of the long-read assemblies was 333.8 kb. For long-read

sequencing, the longest assembled contigs were an average of 3.7 Mb, about the size
of a complete bacterial genome, while the longest lllumina contigs were about 0.6 Mb
on average (Figure 4 and Figure 5).
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Metagenomic assembly statistics from long-read
assemblies.

(A) Total length of the assembly per sample.
(B) Number of contigs per sample.
(C) Longest contig per sample.

(D) N50 of contigs per sample.

We assembled an average of 116 circular contigs per sample from the long-read data,
which may represent complete bacterial chromosomes, viruses, or plasmids (Figure 6,
Table 3). As expected, our data suggest that using long reads dramatically improved
assembly contiguity.
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Figure 6

Number of circular contigs per
sample.



<1000 1000- 10000- | 100000 bp -1 1
bp 10000 bp 100000 bp Mbp Mbp
AL 4M 10 81 39 3 0
EL2wW 2 58 18 1 3
EL 4W 1 34 19 2 3
EL 4W
WGA 2 40 35 1 1
EL12W 4 63 44 3 2
oM 2w 5 43 24 2 2
OoOM 4w 5 47 14 2 2
VOV“GII : W 3 28 41 0 0
oM 8W 0 51 41 2 4
WH 1M 14 129 82 7 2
WH 2M 21 151 39 4 0
Wg : M 2 49 64 4 1
WH 4M 1 90 38 1 0
WH 2M
Hous 18 144 52 2 1
WI 3W 5 20 12 1 3
Table 3

Size distribution of circular contigs in long-read assemblies.
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Since the cheeses sampled all belong to a similar rind style and are aged in the same
facility, we next applied a min-hash-based comparison pipeline to the short-read data
to understand how similar these data sets are. Sourmash comparison of the time
series assemblies showed that the microbial communities from OM and EL cluster
closely together, while WH appears distinct (Figure 7, green points). Based on short-
read data, the OM and EL communities appear to be dominated by Psychrobacter and
Pseudoalteromonas spp. throughout the aging process. Actinobacteria and
Halomonas spp. more heavily dominate WH communities. A larger fraction of the WH
metagenome is unclassified compared to the other two communities (Figure 8). We
suspect this may be due to a higher fraction of fungal genomes in WH that are not well

represented in databases.
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Change in abundance of microbes over the aging process
based on sourmash analysis of short-read sequencing data.



Note that colors correspond to different microbes across the three
panels.

Key takeaways

Cheese rinds are semi-complex microbial communities containing bacteria, viruses,
and fungi. We used both long- and short-read sequencing to survey the microbial
communities of five different cheeses across multiple time points. Long-read
sequencing lets us assemble contigs the length of bacterial chromosomes. These
data sets can serve as resources for benchmarking computational workflows and
guiding computational methods development at Arcadia and beyond.

Please reuse our data!

We sequenced the same communities using multiple approaches: short-read lllumina
sequencing, native DNA ONT sequencing, and whole-genome amplified ONT
sequencing. These paired data sets are a resource to evaluate how different
sequencing approaches differentially impact recovery of microbial community
members [12], an important consideration when choosing a sequencing methodology.

We also generated paired native DNA and whole-genome amplified (WGA) ONT data
sets as a resource to facilitate DNA modification discovery (for example, [5] and [13]).
DNA modification identification can guide genome engineering efforts of bacteria [14]
[15], as well as the discovery of new DNA chemistries in microbial communities. As
current de novo modification prediction tools for ONT data are designed for ONT R9
chemistry, which will be fully discontinued this year, we hope that the paired
WGA:native R10 chemistry data that we've provided will be useful for the development
of updated tools. FAST5 files required for this type of analysis are available in the
European Nucleotide Archive (ENA).

We encourage others interested in microbial communities and/or DNA modification to
explore these data sets!


https://www.ebi.ac.uk/ena/browser/view/PRJEB58160

Next steps

We're not planning to further analyze this data in the near-to-medium-term, but we

encourage others to make good use of the paired data sets and stocked samples.

We have also done HiPR-FISH spatial imaging [16] on the same cheese samples

sequenced here. Be on the lookout for an upcoming pub presenting this data!

Acknowledgements Thank you to Julia Pringle and Jasper Hill Farm for

organizing the collection of cheese samples from

the cheese aging facility.
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