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proteins

We assembled a comprehensive dataset of proteins from Asgard

archaea and giant virus genome assemblies. This dataset lets us

explore protein sequence and structure relationships more broadly

across the tree of life to better understand protein structure and

function.
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Purpose
We wanted to build a deeply annotated proteome resource to expand the phylogenetic

breadth of our investigations into protein evolution and sequence–structure–function

relationships. Therefore, we compiled and annotated the proteomes of Asgard

archaea, the closest relative of eukaryotes, and giant viruses, which naturally infect
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Background and goals
As a company, we want to explore the boundaries of protein sequence–structure–

function relationships across the tree of life. So far, our explorations have spanned the

breadth of eukaryotic diversity, enabled by the data underlying our organismal

selection tool, “Zoogle” [1]. However, these boundaries could be further probed by

expanding our analyses beyond the evolution of eukaryotes (Figure 1). Asgard archaea

are the closest relatives of eukaryotes [2][3][4][5], making them a clear priority for

extending our work deeper into evolutionary time. In addition to finding the edges of

sequence–structure–function diversity, Asgard archaea encode much of the same

cellular machinery as eukaryotes [5][6][7][8][9][10], and we hope this resource will

enable a deeper understanding of the origins of eukaryotes. Giant viruses (or

nucleocytoplasmic large dsDNA viruses, NCLDV) represent a similarly underdeveloped

opportunity to study sequence–structure–function relationships. These viruses infect

primarily single-cell eukaryotes, meaning their divergent proteins function in

eukaryotic cells and perturb eukaryotic cell biology. Much of their proteome is "dark

matter," with no sequence homology to anything in public databases [11][12][13].

Among these proteomes are many homologs of eukaryotic proteins associated with

genetic disease — proteins involved in translation, DNA and RNA processing,

metabolism, cytoskeletal architecture, and trafficking. Most research on Asgard

many of the unicellular organisms we work with at Arcadia. This dataset should serve

as a valuable community resource for scientists interested in protein evolution and the

origin of eukaryotes.

We built this dataset from publicly available genome assemblies from NCBI,

comprising 649 Asgard archaea and 446 giant virus entries. Three hundred eleven of

the Asgard archaea and all 446 of the giant virus assemblies included proteomes, and

we assembled and annotated the data from those. We chose not to annotate the

assemblies without proteomes, so there's likely more to discover in public databases.

Data from this pub is available on Zenodo.

All associated code and critical data are available in this GitHub repository.

https://zoogle.arcadiascience.com/
https://doi.org/10.5281/zenodo.15933360
https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes


archaea has focused on a limited number of these homologs of eukaryotic signature

proteins like actins and ESCRTs [2]. To move further, we need an annotated dataset of

largely uncharacterized proteomes to comprehensively characterize protein

sequence, structure, and functional diversity across the tree of life.

We should study non-eukaryotic genomes to get a more complete picture

of sequence–structure–function relationships.

Eukaryotes originated from within Asgard archaea, suggesting that studying the

Asgard proteome could offer novel insight into sequence–structure relationships

deep into evolutionary time.

Giant viruses naturally infect single-cell organisms close to the root of the

eukaryotic tree and have exchanged genetic information with their hosts

continuously throughout time.

Figure 1



Specific goals

This work aligns with and facilitates an expansion of our research into protein evolution

and design. We previously developed the ProteinCartography pipeline [14], and we

used components of that tool to compile this dataset. We’ve shown previously that

integrating sequence, structure, and functional data can unlock discoveries across

large evolutionary time-scales, so we’re confident this is a practical approach to gain

novel insights from the Asgard archaea and giant virus proteomes we’ve assembled

here.

Given this context, our specific goals for this project were to:

1. Create a comprehensive, consistently annotated database: Process 311

Asgard archaeal and 446 giant virus proteomes using the same pipeline, applying

the same categorization rules and analysis parameters across > 840,000 diverse

proteins.

2. Characterize functional and structural landscapes: Map the distribution of

proteins across functional categories and predict structural features like

transmembrane domains, signal peptides, and intrinsic disorder. This

characterization enables the prediction and prioritization of protein families and

individual proteins for folding and functional annotation.

3. Quantify evolutionary diversity within orthologous groups: Apply Hill’s

diversity metrics and calculate average pairwise sequence identity (APSI) to

identify patterns in how proteins evolve within orthologous families, revealing

different evolutionary constraints across functional categories.

4. Map connections to eukaryotic proteins: Use DIAMOND to perform homology

searches against eukaryotic proteomes from the organisms included in our

Zoogle organismal selection tool.

5. Define the "structurally dark" proteome: Filter the dataset against structural

databases such as PDB, AlphaFold DB, and ESMAtlas to identify proteins lacking

structural characterization. This filtering provides understudied targets for future

structural studies.

6. Establish a foundation for targeted functional studies: Using domain

architectures for each protein, evaluate their likelihood to produce high-quality

predicted structures, setting the stage for future work.

https://zoogle.arcadiascience.com/about


Given our goal of exploring the boundaries of protein sequence–structure–function

relationships across the tree of life, this dataset of > 840,000 Asgard archaea and

giant virus proteins should serve as a crucial resource. By systematically annotating

and analyzing these proteomes, we aim to deepen our understanding of how protein

sequences dictate structure and how far sequences can diverge while maintaining fold

and function. This knowledge will help us prioritize targets for structural and functional

studies and enhance our work designing biologics and identifying disease targets.

The approach
For a visual overview of our approach, see Figure 2.

We downloaded proteomes from NCBI associated with 311 Asgard archaea and 446

giant virus genome assemblies. These assemblies span all known Asgard phyla

(Prometheoarchaeota, Heimdallarchaeota, Thorarchaeota, Odinarchaeota,

Lokiarchaeota, Hodarchaeota, Helarchaeota, Wukongarchaeota, Hermodarchaeota,

and Njordarchaeota) and the major families of giant viruses (Mimiviridae,

Phycodnaviridae, Ascoviridae, Marseilleviridae, Pandoraviridae, Pithoviridae, and

assorted unclassified viruses). A substantial fraction of the Asgard assemblies belong

to an “unknown” phylum, which we plan to probe in the future.

We filtered sequences to remove those with non-standard amino acids and ≥ 50%

disorder, and standardized headers for consistent processing. Generally, we kept

Asgard and giant virus proteins separated, running parallel analyses on each. We used

OrthoFinder (v3.0; RRID: SCR_017118) [15] to identify and partition protein families, and

Interproscan (v5.73-104; RRID: SCR_0058290) to characterize domain architectures

[16]. We used USPNet [17] to identify signal peptides, predict subcellular localization,

and define the mature protein sequences. We implemented a custom dictionary based

on IPR codes and keyword matching to assign proteins to functional categories. We

also screened each sequence against structural databases and conducted a Hill’s

diversity analysis to characterize the diversity within orthogroups. We then conducted

sequence-based homology searches against 63 eukaryotic proteomes corresponding

to the organisms in our Zoogle organism selection tool. Finally, we integrated

sequence features to calculate a normalized score (0–100) representing the likelihood

that a protein sequence would produce a high-quality folding prediction. We

implemented this pipeline using a variety of Python and bash scripts, as well as the

Jupyter Notebook, “database_assembly.ipynb.”

https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/data/reference/genome_assembly_taxonomy_list.csv
https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/data/reference/genome_assembly_taxonomy_list.csv
https://zoogle.arcadiascience.com/about
https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/notebooks/database_assembly.ipynb


Schematic of the workflow we used to assemble the Asgard/giant

virus proteome database.

We collected 311 Asgard and 446 giant virus proteomes and used

OrthoFinder (v3.0) to sort them into orthogroups. We then

comprehensively annotated the sequences using Hill’s diversity

analysis, subcellular localization prediction, functional categorization,

and filtering against structure databases. Finally, we queried the protein

sequences against a custom DIAMOND database derived from 63

representative eukaryotic proteomes.

Figure 2



Orthology inference and diversity analysis

We used OrthoFinder (v3.0; RRID: SCR_017118) [15] to define orthogroups for the

Asgard archaea and giant virus proteomes after filtering out sequences with non-

standard amino acids and high disorder (> 0.5) using metapredict (v3) [18]. We then

filtered to consider only orthogroups with more than five sequences in our diversity

analyses, eliminating 10,611 orthogroups and left 11,613 encompassing 818,767 protein

sequences out of the entire dataset of 844,750 proteins. We used MAFFT (v7.526;

RRID: SCR_011811) [19] to align the sequences in each orthogroup and a highly

parallelized version of FastTree 2 [20] called VeryFastTree (v4.0.5; RRID: SCR_023594)

[21] to infer approximate maximum-likelihood phylogenies for each orthogroup. We

then used a custom script (hill_diversity_analysis.py) to run a Hill’s diversity analysis and

calculated the average pairwise sequence identity (APSI) for each orthogroup. A "high"

(Hi) value for a given metric (APSI, Shannon entropy, or observed richness) indicated

that the orthogroup’s value for that metric was in the top 25th percentile, whereas a

"low" (Lo) value for a given metric showed that the orthogroup’s value was in the bottom

25th percentile. Combined Hi/Lo classifications are based on these percentiles for

individual metrics.

Protein domain identification, localization, and

functional prediction

To determine the putative function of protein sequences, we characterized domain

architectures using Interproscan 5 (v5.73-104, RRID: SCR_005829) [16] in Docker. We

used USPNet [17] to identify signal peptides, derive mature protein sequences, and

predict subcellular localization. We used a custom dictionary to define and sort

proteins into functional categories “Cytoskeleton,” “DNA Info Processing,” “RNA Info

Processing,” “ESCRT/Endosomal Sorting,” “Membrane Trafficking/Vesicles,” “Ubiquitin

System,” “N-glycosylation,” “Nuclear Transport/Pore,” “Translation,” “Signal

Transduction,” and “Metabolism” in our “database_assembly.ipynb” Jupyter Notebook.

We used metapredict (v3) to predict the intrinsic disorder of each protein sequence

[18].

https://github.com/davidemms/OrthoFinder
https://github.com/idptools/metapredict
https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/scripts/hill_diversity_analysis.py
https://github.com/ml4bio/USPNet
https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/notebooks/database_assembly.ipynb
https://github.com/idptools/metapredict


Structural database filtering

We conducted a series of searches against existing databases to determine whether

structural information existed for any proteins in the dataset. We first retrieved UniProt

IDs for sequences in the database and queried these against the PDB and AlphaFold

databases. We then conducted sequence-based searches against these databases.

Finally, we used MMseqs2 (v17.b804f) [22] to filter all the PDB/AFDB double-negative

sequences against MGNify clusters, and filtered those hits against UniProt IDs

reported recently to be present in ESMAtlas [23]. 225,704/844,750 proteins were

present in one of these databases, with the vast majority (224,725) found in the AFDB.

619,873 sequences lack any structural information.

Eukaryotic homolog identification

We downloaded complete proteomes from NCBI corresponding to the 63 eukaryotes

in our “Zoogle” organism selection portal. We concatenated these proteomes into a

single FASTA and made a custom database using DIAMOND (v2.1.11; RRID:

SCR_016071) [24]. We then queried the Asgard archaea and giant virus proteomes

against this database with a minimum score of e ≤ 1e−10 to be considered a hit.

Intrinsic quality score calculation

Given that we intend this dataset to be a resource for exploring the boundaries of

protein sequence–structure relationships, we wanted to determine how likely any given

sequence was to produce a high-confidence structural model. To do so, we developed

a customized, normalized (0–100) “intrinsic quality score” incorporating the following

parameters:

# --- Intrinsic Quality Scoring Parameters ---

# Length (amino acids)

OPTIMAL_LENGTH_MIN = 80

OPTIMAL_LENGTH_MAX = 500

LENGTH_SCORE_OPTIMAL = 20

LENGTH_SCORE_SUBOPTIMAL_PENALTY = -10

https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/data/input/eukaryotic_species_taxonomy.csv
https://zoogle.arcadiascience.com/


# Disorder (percentage)

LOW_DISORDER_THRESHOLD = 20

HIGH_DISORDER_THRESHOLD = 50

DISORDER_SCORE_LOW = 15

DISORDER_SCORE_HIGH_PENALTY = -20

TMD_PENALTY = -30

NO_TMD_BONUS = 5 

# Signal Peptide

HAS_SIGNAL_PEPTIDE_PENALTY = -5 # Small penalty for complexi

# Domain Architecture (Complexity)

# Number of domains 

LOW_DOMAIN_COUNT_THRESHOLD = 3 # <= this number is good

HIGH_DOMAIN_COUNT_THRESHOLD = 6 # > this number is complex

DOMAIN_COUNT_LOW_BONUS = 10

DOMAIN_COUNT_HIGH_PENALTY = -10

# Bonus for single domain proteins

SINGLE_DOMAIN_BONUS = 5

Data integration and visualization

We integrated these analyses into a central database using pandas (v1.5.3; RRID:

SCR_018214) in Python. We used Plotly (v6.0.1; RRID: SCR_013991) for comparative

visualizations, as implemented in the “Figures_DB_Pub.ipynb” notebook.

Additional methods

We used Google Gemini 2.5 Pro (preview) for coding and describing methods. We

used Claude 3.7 Sonnet (extended thinking) to help with early drafts. We also used

Claude to review our code and selectively incorporated its feedback. We used

Grammarly Premium to help copy-edit draft text to match Arcadia’s style and to clarify

and streamline our writing.

https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes/blob/main/notebooks/Figures_DB_Pub.ipynb


Code, including database construction scripts, annotation pipelines, and

analysis notebooks, is available in our GitHub repository (DOI:

10.5281/zenodo.16597599). Access our raw data files on Zenodo (DOI:

10.5281/zenodo.16809414).

Findings about the dataset

Proteins with no structural information

dominate our dataset; many proteins don’t have

identifiable domains

Our database is derived from 311 Asgard archaea and 446 giant virus proteomes and

contains 844,750 proteins in total — 736,919 from Asgard archaea and 107,830 from

giant viruses (Figure 3, A–B). The Asgard archaeal proteomes are dominated by

Heimdallarchaeota (~23% of proteins), Prometheoarchaeota (~29%), and

Thorarchaeota (~17%), with a large fraction classified as unknown phylum (23%). The

giant virus proteins primarily derive from viruses in the Mimiviridae (46%) and

Phycodnaviridae (19%) families, while ~14% of proteins were from unclassified viruses.

Next, we analyzed the dataset to determine how many proteins we could assign

putative or even hypothesized functions based on the sequence alone. Approximately

70% of Asgard archaeal proteins and 99% of giant virus proteins lack structural

information based on filtering against the PDB, AlphaFold database, or ESMAtlas. 47%

of Asgard proteins and 75% of giant virus proteins contained no protein domains

identifiable by InterProScan. 67% of Asgard proteins and 82% of viral proteins didn’t

return any eukaryotic hits from DIAMOND searches. Finally, 26% of Asgard proteins

and 67% of viral proteins were “triple negative” across all three categories (265,084

proteins), so we’ll have to fold these to understand what they do and how we might use

them in our work.

https://github.com/Arcadia-Science/2025-Asgard-giant-virus-proteomes
https://doi.org/10.5281/zenodo.16597599
https://doi.org/10.5281/zenodo.16809414


The database contains over 840,000 Asgard and giant virus

proteins, many of which lack structural or functional

annotation.

(A) The number of Asgard and giant virus genome assemblies

represented in the dataset is stratified by Asgard phyla and virus

families.

(B) Number of individual protein sequences comprising the

dataset, again stratified by Asgard phyla and virus families.

(C) The percentage of proteins in Asgard and giant viruses that

lack structural information, identifiable protein domains, and

Figure 3



eukaryotic homologs, or all three.

Most proteins are cytoplasmic and involved in

core cell biological functions

We predicted the subcellular localization of Asgard and viral proteins based on

identifiable signal peptides, and both groups were remarkably similar. 97% of proteins

in the database have no known signal peptide and are predicted to be cytoplasmic.

Just under 3% are secreted, and we’d expect a small fraction, 0.2%, to be membrane-

bound (Figure 4, A). Given that the intrinsic folding score we calculated included

penalties for signal peptides and transmembrane domains, this breakdown suggests

we can generate high-confidence structural models across the database.

The functional landscape (Figure 4, B) across Asgard and viral proteins is similar,

though with some differences. Both groups contain a large percentage of metabolic,

signal transduction, and DNA-processing proteins, but the Asgard proteome is

particularly enriched in metabolic proteins. A much smaller percentage have only

“general protein features,” meaning InterProScan identified domains, but they were too

nonspecific to assign to a category.



Predicted subcellular localization and functional categorization of the

Asgard/giant virus dataset.

(A) Subcellular localization predictions for Asgard archaea and giant virus

proteins.

(B) Functional categorization for Asgard archaea and giant virus proteins, based

on IPR codes

Sequence conservation differs with predicted

function, but phylogenetic breadth and

sequence divergence correlate

To understand how proteins evolve within families, we analyzed Hill’s diversity [25] to

characterize the evolutionary diversity within the 11,613 orthogroups containing ≥ 5

sequences. Specifically, we measured two key aspects of diversity: Shannon entropy,

which captures how broadly distributed proteins are across the evolutionary tree (with

Figure 4



higher values representing greater phylogenetic diversity in the orthogroup), and

average pairwise sequence identity (APSI), a measure of how much the amino acid

sequences in the orthogroup have diverged over time.

We expect these metrics to be inversely related, such that phylogenetically diverse

orthogroups should exhibit lower APSI than orthogroups with only a narrow

evolutionary range of organisms represented. Orthogroups that break this expected

pattern would be particularly interesting. If Shannon entropy is high and APSI is also

high, that would suggest the protein family is under purifying selection, with its function

susceptible to changes in sequence. In contrast, a lower-than-expected APSI might

suggest a protein family where the structure and function are relatively insensitive to

the amino acid sequence conservation.

Shannon entropy and APSI were negatively correlated (Figure 5, A). We stratified

orthogroups by whether they fall into each metric's tails (bottom 25th or top 25th

percentile) and identified those in two tails (Figure 5, B), since these orthogroups are

most interesting to us. Finally, we examined whether different functional categories are

enriched in high-interest categories (Figure 5, C). Most functional categories are

enriched for Hi entropy/Hi APSI, consistent with purifying selection on these protein

families involved in core cellular functions. Strikingly, metabolic protein families show

the opposite pattern; they're enriched for low entropy/low APSI, suggesting they have

more sequence space available to explore without losing their essential functions.



Orthogroups in the dataset exhibit varied sequence and structural

diversity.

(A) Shannon entropy of each orthogroup plotted against the average pairwise

sequence identity, showing a moderate negative correlation.

(B) Fraction of orthogroups that fall into the tails of Shannon entropy and APSI

distributions.

(C) Heatmap showing the entropy/APSI profile of orthogroups in core functional

categories. obs = observed; exp = expected.

Figure 5



Unicellular eukaryotes dominate among

homologs

We were particularly interested in the potential to functionally annotate experimentally

interesting proteins in unicellular eukaryotes we study in the lab, such as

Chlamydomonas reinhardtii, Chlorella vulgaris, and others we identified via our Zoogle

organism selection tool as potential model organisms for monogenic disease [26]. To

facilitate this and assist with preliminary functional annotation, we assembled a

custom DIAMOND database from the complete proteomes of the 63 organisms in

Zoogle, which span 1.5 billion years of eukaryotic evolution. Then we determined which

organisms appeared most frequently as top hits. For Asgard proteins (Figure 6, A),

single-celled eukaryotes such as amoeba and green algae dominated the top hits,

which met our expectations given these organisms and Asgard archaea are near the

root of eukaryotic phylogeny. We’re particularly excited to see one of our most-used

model organisms, Chlamydomonas reinhardtii, in the top five. We think it’s a promising

platform for the functional annotation of many proteins. Other tractable organisms

(e.g., Tetrahymena thermophila and Candida albicans) are also highly ranked, so we

think there’s potential to take these proteins into the lab too.

The viral proteins similarly hit most frequently to unicellular organisms (Figure 6, B),

which makes sense since those are the organisms they infect. We’re excited again to

see C. reinhardtii in the top ten, but the presence of ciliates T. thermophila and

Paramecium tetraurelia is particularly intriguing. So far, no ciliate viruses have been

described in the literature, though some metagenomic datasets hint at the possibility

[27][28]. Our results suggest extensive horizontal gene transfer between giant viruses

and ciliates, so infection of those organisms by viruses related to those in our dataset

seems likely.

https://zoogle.arcadiascience.com/about
https://zoogle.arcadiascience.com/about


Top Zoogle organisms appearing as DIAMOND hits.

Zoogle eukaryotes appearing as top hits against Asgard proteins (A)

or giant virus proteins (B).

You can access our proteome dataset, annotation files, and diversity

metrics on Zenodo (DOI: 10.5281/zenodo.16809414). We’ve included the central

database file and key supporting analyses for researchers exploring these

proteomes.

Figure 6
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Key takeaways
We hope this dataset, comprising more than 840,000 proteins from Asgard archaea

and giant virus proteomes, will be a substantial new resource for probing the frontiers

of protein sequence–structure–function relationships and evolutionary biology.

The database contains:

1. Functional and structural characterization of 311 Asgard and 446 giant virus

proteomes

2. Evolutionary relationships within protein families

3. Connections to eukaryotic proteins

4. Metrics on the likelihood that a protein will fold computationally with high

confidence

70% of Asgard and 99% of giant virus proteins lack structural information in public

databases such as PDB, AlphaFold DB, or ESMAtlas. This structural darkness is

compounded by the fact that a substantial fraction — 47% of Asgard and 75% of giant

virus proteins — contain no identifiable protein domains via InterProScan, and 26% of

Asgard and 67% of viral proteins qualify as "triple negative," meaning they have no

structural data, no identifiable domains, and no detectable eukaryotic homologs. This

vast unknown space highlights an untapped reservoir of information about protein

sequence, structure, and function. There may even be novel protein folds or

unexpected horizontal relationships within this dataset, which we’ve just begun to

scratch the surface of.

Among the proteins in the dataset we can annotate, there’s functional enrichment for

proteins involved in core cellular processes, including metabolism, signal

transduction, and DNA/RNA processing. Asgard proteomes show a particular

enrichment in metabolic proteins.

Our intra-orthogroup Hill’s diversity analyses revealed a largely expected negative

correlation between Shannon entropy and average pairwise sequence identity, but

pulling out high-interest groups revealed some interesting patterns. Specifically, most

of the major functional groups are probably under purifying selection, with higher-

than-expected sequence conservation given the phylogenetic diversity present in the

dataset. However, metabolic protein sequences appear to be under a more relaxed



constraint. Given the importance of metabolic pathways to disease, we’re excited to

extract novel protein features central to core cellular functions from this data.

While large portions of both proteomes lack homologs in our Zoogle-derived

DIAMOND database, those connections that do exist are to unicellular eukaryotes.

Asgard proteins show strong links to protists like amoebae and green algae (including

the model organism Chlamydomonas reinhardtii), reflecting archaea’s phylogenetic

position near the root of eukaryotes. Similarly, viral protein homologs suggest

unicellular eukaryotic hosts, and the prevalence of ciliates — previously not known to

host archaeal viruses — among top homologs is a tantalizing hint of undiscovered viral

diversity.

Next steps
This extensively annotated dataset opens numerous avenues for research to expand

our understanding of protein evolution and structure–function relationships. We’ve

identified several high-priority directions for our future work:

1. We'll systematically explore the boundaries of sequence–structure–function

relationships within the dataset. We’ll identify orthogroups with members with

structural and, where possible, functional information in the literature and explore

their diversity using a diverse evolutionary toolkit. This will allow us to start defining

generalizable rules for how far and in what ways different protein families can

diverge while retaining their necessary functions.

2. We'll move beyond computational prediction to experimental validation of

selected targets. The strong connections we identified to model organisms like

Chlamydomonas reinhardtii and Tetrahymena thermophila provide excellent

heterologous expression and functional characterization opportunities. We'll

prioritize proteins that show unusual evolutionary patterns (such as high

conservation despite high phylogenetic diversity) and those with potential

connections to human disease-relevant pathways.

3. We plan to conduct deeper evolutionary analyses to better understand the

connections between Asgard archaea and eukaryotes. We’ll use phylogenetics to

study specific protein families' evolutionary histories and trajectories, particularly

those implicated in eukaryogenesis. We’ll also look for novel eukaryotic homologs

in our structural predictions. These analyses will help illuminate how these



proteins evolved and diversified across divergent lineages, potentially revealing

new insights into the origins of eukaryotic cellular complexity.

4. Finally, we'll continually refine and expand this dataset as new genomes become

available. The 338 Asgard archaeal assemblies we identified but didn't process

(due to a lack of proteome files) represent an immediate opportunity to expand our

coverage. Additionally, integration with other Arcadia datasets will enable cross-

domain comparative analyses that could reveal broader patterns in protein

evolution and innovation.

Beyond our research, we hope that structural biologists, evolutionary geneticists,

protein engineers, and microbiologists will find this dataset valuable for their

investigations. We're eager to hear from researchers using it to explore protein

structure prediction in highly divergent sequences, investigate the origins of eukaryotic

cellular complexity, or discover novel enzymatic functions for biotechnology

applications. We particularly hope this resource will accelerate research into the

"structurally dark" proteome, where novel folds and functions likely await discovery. We

welcome feedback from the community about other compelling research directions

this dataset might enable.

We look forward to seeing how it contributes to our collective understanding of protein

evolution across the deepest branches of the tree of life.
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