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Purpose

Mapping the connections between genotypes and phenotypes is central to
understanding the principles governing biology and its innovations. One of Arcadia's
long-term goals is to improve methods and datasets for these types of analyses. The
increasing availability of genetic and phenotypic data from many different Escherichia
coli infections presents an opportunity to investigate genotype-phenotype
relationships with particular relevance to anti-microbial resistance (AMR). Additionally,
the genetic diversity observed within this species is almost comparable to the diversity
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found between species, offering a unique opportunity to understand how genetic
variation drives phenotypic diversity across different levels of biological organization.
Therefore, using existing data, we produced a large-scale dataset to serve as a
testbed for genotype-phenotype prediction models, exploring gene-gene interactions
and establishing frameworks for bridging genetic analyses within and between
species.

We constructed our dataset using the wealth of sequenced microbial genomes and
associated phenotypes, including AMR. Specifically, from 72 well-studied and heavily
sequenced E. coli strains, we assembled a pangenome, capturing the total genome
content from these species, including the presence or absence of genetic material.
We then aligned sequence data from ~7,000 E. coli strains to this pangenome and
performed variant calling to identify genetic variation across strains. We found
significant genetic diversity, identifying 2.4 million variants. To validate this dataset, we
measured the association of variants in genes known to impact AMR with AMR
phenotypes within the dataset. We successfully correlated genetic variation in known
AMR-related genes to AMR phenotypes.

This work will be of particular interest to geneticists and evolutionary biologists. It may
also be valuable for microbiologists and epidemiologists who are trying to develop
more effective treatment and prevention strategies for bacterial infections.

- This pub is part of the platform effort, “Genetics: Decoding evolutionary drivers

across biology.” Visit the platform narrative for more background and context.

« You can find our code, including the code to generate the E. coli pangenome, the
main pipeline to perform variant-calling, and the notebooks to further analyze the

dataset, in this GitHub repository.

« The data, including the list of genome accession humbers for the pangenome, the
SRA accession numbers of the strains in the dataset, and the output of the variant-

calling process, are on Zenodo.
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Background and goals

For over 100 years, mapping genetic variation to phenotypes has been a focus in fields
such as agriculture, human health, and evolutionary biology. The development of high-
throughput sequencing has significantly increased the amount of genetic information
available, including data from entire populations and thousands of individuals. This
expansion has accelerated efforts to map genetic variation with phenotypes,
uncovering complex relationships between specific genetic changes and their
associated traits. It has also facilitated the development of more accurate genotype-
phenotype predictions in both eukaryotes and prokaryotes, enabling researchers to
identify critical genetic markers linked to various biological functions and disease
states [1][2].

Genotype-phenotype studies rely on managing complex, heterogeneous, and
multidimensional data to connect genotype information to phenotypes. Simply
assembling an appropriate dataset can be difficult and is complicated by an
organism's genetic complexity and incomplete genetic or phenotypic information. In
this work, we aimed to build a high-quality dataset as a resource for investigators
developing analytical frameworks in the genotype-phenotype space, including
genotype-phenotype predictions, identification of epistasis, and new approaches

bridging within and between species analysis.

With comparatively simple genome structure and frequently complete genotype and
phenotype information, bacteria present an opportunity to build a large, well-
standardized dataset. Research deciphering the genetic underpinnings of traits like
antibiotic resistance, pathogenicity, and metabolism has resulted in well-documented
microbial genomes and phenotypes. Specifically, E. coli is an extensively studied,
occasionally pathogenic bacterium, with some variants posing significant healthcare
challenges due to the rise of anti-microbial resistance (AMR). As a result, clinical
studies have tracked infection outbreaks, sequenced strain genomes, and
documented measured or predicted antimicrobial resistance phenotypes for large

populations.

Extensive E. coli research has demonstrated remarkable genetic diversity. Only 20 to
40% of the genome is present across strains (the species' core genome), while the
presence of the remainder varies [3][4]. This diversity means that, in a large population
of E. coli strains, we can study genetic variation at both the nucleotide level (typical of
within-species analyses) and the larger scale of gene presence-absence, frequently



used when comparing species. Applying both types of analyses could lead to a more
comprehensive understanding of how genetic variation drives phenotypic diversity
within and between species.

In this work, we aimed to consolidate genotype-phenotype information of E. coli from a
public database, mapping genetic diversity and variations to AMR phenotypes. We
conducted variant calling on nearly 7,000 sequenced strains using a custom E. coli
pangenome and correlated this data with AMR profiles. We've shared the dataset here.
We hope it’ll serve as a resource for large-scale genotype-phenotype studies and
provide a benchmark dataset for developing new methods. While it may allow
researchers to understand AMR mechanisms better and investigate genetic
interactions, the dataset should also enable novel phenotype-phenotype prediction
and phylogenetic research analyses.

SHOW ME THE DATA: Access our data, including the list of accession numbers
of the genomes for the pangenome, the SRA accession numbers of the strains in

the dataset, and the output of the variant-calling process dataset, on Zenodo
(DOI:10.5281/zen0d0.12692732).

The approach

Our primary objective was to create a dataset integrating available genotypic and
phenotypic E. coli data to allow mapping between genetic variation and known
antimicrobial resistance (AMR) phenotypes. We first identified an E. coli cohort with
documented AMR phenotypes and available genomes. We then characterized the
phenotype distribution within our cohort. Next, given the genetic diversity of E. coli, we
constructed a pangenome from 72 especially well-studied strains and used it to
conduct variant calling across all 7,057 strains, including these initial 72. Finally, we
correlated the identified genetic variations with the known AMR phenotypes.

You can find our code, including the code to generate the E. coli pangenome, the
main pipeline to perform variant-calling, and the notebooks to further analyze the
dataset, in this GitHub repository (DOI: 10.5281/zenodo.13357501).
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Generating the reference genome

Selecting an appropriate reference genome is essential for genotype-phenotype
analyses that leverage precise genomic locations of genetic variants. The genome is
the shared reference for genetic variation across strains and, thus, must provide
comprehensive coverage across strains and accurately represent the genetic diversity
of the cohort [5].

E. coli exhibits high genetic diversity among its strains in terms of single-nucleotide
variation and, different from many eukaryotic species, the presence or absence of
large portions of the genome [3]. We, therefore, need a reference genome
encompassing this global diversity. We decided to generate a pangenome using the
genomes of the ECOR collection [6], which consists of 72 E. coli strains isolated from a
wide variety of hosts and geographical locations, including strains from different
phylogenetic groups. This collection offers a broad representation of the natural
diversity of the species.

Much pangenome analysis has focused on coding genes and excluded intergenic
regions (IGRs). However, IGRs are essential for gene regulation and mediating gene-
gene interactions. Therefore, we included IGRs in our pangenome assembly. To
construct the pangenome for this study, we first obtained the sequenced genome for
all 72 strains in the ECOR collection from [7] using the Batch Entrez APl and the
strains’ GenBank accession numbers. Using the default parameters, we annotated the
genomes with Prokka (version 1.14.6) [8]. Next, we generated the pangenome of coding
genes with Roary (version 3.13.0) [9] using a 90% identity threshold to cluster the
protein sequences and performing within-cluster alignments to identify the reference
sequence in each cluster. Finally, we generated the pangenome of IGRs with Piggy
(version 1.5) [10], using the program defaults parameters, and we combined both
pangenomes into a single FASTA file (whole_pangenome.FASTA on Zenodo).

This final file contains the collective genetic content of the ECOR collection and
served as the “reference genome” for this study. It contains 18,494 coding gene
sequences, including 2,652 core genes found in 99% of the ECOR collection species
and 13,947 IGRs. Altogether, the genome comprises 32,441 sequences, which we call
contigs (or pangenome contigs). Information about the presence or absence of
contigs in strains is in the file whole_pan_ecor_presence_absence.csv on Zenodo.
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Finally, we conducted functional annotation of the pangenome's coding sequences
using the eggNOG-mapper (version 2.1.12) web interface [11].

Selecting the working dataset

We used the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) to identify
the study cohort and compile our dataset of available E. coli genomes and associated
antimicrobial resistance phenotypes. We conducted two separate searches: first, we
identified strains with genomic sequence data available on the Sequence Read
Archive (SRA), and second, we collected AMR phenotype data from BV-BRC. By
intersecting the results of these searches, we identified 6,985 E. coli strains for which
genomic sequencing data were available from the SRA, and phenotypic information
was available for at least one antibiotic.

SHOW ME THE DATA: The list of these species, the SRA accession numbers
for their genome sequencing files (strains_metadata.csv), and the AMR
phenotype information (phenotype_matrix_08302024.csv) are available on
Zenodo.

Identifying genetic variants

To enable genotype-phenotype mapping, we needed to identify genetic variation
across the cohort of E. coli strains. This procedure included multiple steps. First, we
created a reference genome (see above) that we could use to identify single-
nucleotide polymorphisms and the presence or absence of large portions of genetic
material. Then, after downloading the available genome sequence data, we
determined the allelic state for each strain at each genomic location that varies
between strains. Finally, we created a genotype matrix containing each strain's
predicted allelic state at each variant location.
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Downloading sequencing reads from the Sequence
Read Archive

We obtained the SRA accession numbers for the sequencing files of the 7,057
selected strains (6,983 strains from the original cohort and 72 strains from the ECOR
collection). Using the GNU parallel shell tool [12] and the faster-dump tool from the
sra-toolkit [13], we downloaded the FASTQ files from paired-end sequencing for each
strain.

Variant calling in 7,057 samples

Variant calling identifies genetic differences between a strain and a reference genome
by aligning genomic sequencing reads from the strains against the reference and
identifying where they differ. These differences are then filtered based on the likelihood
that they're true variants versus sequencing errors and compiled into a variant call
format (VCF) file.

We performed variant calling independently for each strain from our cohort (6,985
strains) and the 72 ECOR strains. Our workflow proceeds as follows: First, we used
fastp [14] to perform quality control, remove sequences corresponding to sequencing
primers and remove reads shorter than 30 nucleotides or quality scores below a
threshold (Phred score below 30 across a sliding window of four bases). Subsequently,
we concatenated the resulting FASTQ files (one for read one and one for read two; all
samples were “paired-end” read data) into a single file, which we then aligned against
the reference pangenome ( BWA mem [15]). We sorted the resulting alignment file and
marked duplicates using SAMtools (version 1.20) [16]. Using Picard (version 2.27.5) [17],
we added read group tags (RG tags), incorporating the strain name to ensure precise

identification and traceability of each sample in the downstream process. Next, we
indexed the alignment file using SAMtools [16] and generated the associated
MPILEUP file using BCFtools [16]. An MPILEUP file is a text-based format that provides
a per-base accumulation of sequencing reads against the reference sequence,
detailing coverage and variant information. Finally, we called variants from the
MPILEUP file using BCFtools [16], generating the corresponding VCF file.

We incorporated this workflow into a Snakefile, allowing for efficient parallel
processing of multiple samples with Snakemake [18].


https://broadinstitute.github.io/picard/

Merging VCF files

The output of this workflow was a single VCF file for each strain. To facilitate the
analysis of genetic variation at the cohort level, we wanted to merge these VCF files.
The procedure to merge VCF files (the merge function in the software package
BCFtools) didn't run on more than 1,000 VCF files at a time. Therefore, we merged
batches of 1,000 files. We re-indexed these files before conducting a final

comprehensive merge (merged_output_allvcf.gz on Zenodo).

Ultimately, we identified 3,119,517 variants in the cohort, including single-nucleotide
polymorphism (SNP) and insertion-deletion (indel) variants.

Filtering variants

While many of these variants are likely to be true genetic variations across this set of
strains, some may result from sequencing or alignment errors. We designed a filtering
strategy to mitigate the risk of false positives while aiming to preserve as many true
positives as possible. We used BCFtools [16] to refine our variant data and filtered out
any variants with a QUAL score below 30 (a threshold for the probability of error) and a
DP (depth of coverage) below 19.28 (a threshold for read depth).

Using a quality threshold of 30 represents a 99.9% probability that the variant is
correctly identified. We established the read coverage threshold based on the
coverage data from the 72 ECOR strains we used to generate the pangenome and our
understanding of the presence or absence of each contig of the pangenome in these
strains. We expand upon this determination process in the next section.

Applying these filters excluded 668,333 variants (21% of the initial dataset), leaving
2,451,184 variants in the dataset (filtered_output.vcf.gz on Zenodo). This filtration is

conservative, and we should note that these excluded variants (~2.8% of all variants)
may be true, potentially phenotypically impactful variation.

Defining the read depth filtering threshold

We defined the read depth threshold as the minimum number of reads required to
confidently assert the presence of a nucleotide (and, by extension, the contig) in a
strain. We analyzed the presence-absence data for the 72 ECOR strains to calculate
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this threshold, incorporating the coverage depth observed for each nucleotide that
mapped against the pangenome.

Using custom Python scripts (extract_mpileup_info.py and humpy_merge_ecor.py), we

first extracted the contig, position, and depth information for each nucleotide from the
MPILEUP files of each of the 72 ECOR strains into a unified matrix (ecor72_array.txt on
Zenodo). Then, a custom R notebook (Ecor72_averaging_contigDP.ipynb) calculated

the average read depth per nucleotide at each contig for each strain as the total reads
per nucleotide divided by the contig length.

Next, by integrating read depth and presence-absence data for each contig across all
strains, we assessed coverage and read depth patterns in relation to the contig's

presence-absence status (ECOR72_and_DP _threshold_analysis.Rmd). We observed
that absent contigs are associated with significantly lower read depth (mean: 3 = 10.85
reads/nucleotides) than present contigs (mean: 51 + 28 reads/nucleotides). Some
present contigs displayed low coverage and read depth, likely due to challenges in
sequencing regions with high repeat content, high GC content, or complex secondary
DNA structures. Conversely, some absent contigs exhibited full coverage and
substantial read depth, potentially due to contamination, genome assembly errors,
index hopping during sequencing, alignment artifacts, or highly repetitive sequences.

Ultimately, we established the DP threshold based on the distribution of read depth for
absent contigs:

« DP threshold = mean read depth of absent contigs + 1.5 x standard deviation

o DPthreshold =3 + 1.5 x 10.85 =19.28

This threshold indicates that we confidently consider any nucleotide or contig with a
read depth exceeding 19.28 to be present.

Annotating variants

We performed automated variant annotation to help interpret the biological
importance of variants in coding regions. Variant annotation uses information such as
gene sequence and annotation to predict whether variants will have minimal or
significant biological effects (e.g., categorizing variants into categories such as silent,
missense, or nonsense mutations).
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We used SnpEff (version 5.2c¢) [19] to annotate variants within the pangenome's coding
sequences, excluding intergenic regions (IGRs). SnpEff analyzes input variants from a
VCEF file by annotating them based on a predefined database that includes gene
annotations and gene sequence information. Since we used a custom pangenome, we
first needed to construct a corresponding custom database before annotating.

Creating a SnpEff database and annotating variants

Creating a genome-specific database for variant annotation using SnpEff requires
genome information in FASTA format and genome annotation in either GTF or GFF
format. To this end, we annotated the pangenome coding sequences

(pangenome_cds.fa on Zenodo) using Prokka (version 1.14.6) [8], and we then used the

output (genes.gff on Zenodo) for SnpEff database creation.

Following the steps outlined in the SnpEff guidelines, we created the custom database
with -noCheckCds -noCheckProtein 10 bypass the use of transcript and protein
sequence information, which wasn't available.

The final database comprises 16,736 coding sequences out of the 18,494 initially
present in the pangenome. Prokka uses Prodigal [20] to identify open reading frames
(ORFs). Prodigal failed to identify 1,758 ORFs, possibly because Prodigal isn't designed
to use pangenomes. Our pangenome contains many more contigs (thousands) than a
typical genome (10s of contigs) expected by Prodigal. This could impact Prodigal in the
following ways: first, during the training phase, Prodigal analyzes the genome to
understand its characteristics, such as codon usage patterns and nucleotide
composition, and adapts to the specific features of the input genome. The diverse and
fragmented nature of a pangenome may hinder Prodigal's ability to accurately train this
model. Second, during the gene prediction phase, Prodigal optimizes the selection of
ORFs to predict the most likely set of genes in the input while ensuring that ORFs don't
overlap improperly. Prodigal assigns scores to each potential ORF and, during the
optimization step, ensures that the final set of predicted ORFs isn't redundant during
the optimization step. Thus, if the same ORF (or substantially overlapping ORFs) is
detected multiple times, only the highest-scoring version is retained. Despite Roary
identifying the ORFs as 90% divergent at the protein level in our pangenome, Prodigal
may still consider them overlapping due to their nucleotide-level similarity. This could
lead to the exclusion of certain ORFs from the final predicted set, contributing to the
observed discrepancy in ORF identification.
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We then used this custom database to annotate the filtered VCF file and generated a
new annotated VCF file (annotated_output.vcf.gz on Zenodo) and the corresponding
SnpEff report (annot_summary_filtered.html on Zenodo).

Filtering silent mutations

We used SnpSift [21], a component of the SnpEff suite, to remove silent mutations
from our set of annotated variants. The remaining variants (output.non_silentvcf.gz on
Zenodo) are likely to impact biology and result in missense, nonsense, and frameshift

mutations.

Analyzing antimicrobial resistance-associated
variants

To assess the veracity of our dataset, we tested whether we could associate AMR
phenotypes with variants in genes known to be involved in AMR. We leveraged
extensive previous work identifying genetic markers linked to AMR in E. coli [22].
Specifically, we focused on five genes known to confer resistance that we also

identified in the pangenome:

. tetA_1(contig: LMHPMMMF_04732), tetA_2 (contig: APHKLHJA_00520), and tet_3
(contig: FCDKFLAE_04147), associated with tetracycline resistance

« dfrD (contig: NGHFEPFE_01999), associated with trimethoprim resistance
« catA1 (contig: DHUINCGMO_04398), associated with chloramphenicol resistance

We extracted non-silent variant information for these contigs
(resistance_output.non_silentvcf.gz on Zenodo) and analyzed the distribution of these

variants across the cohort. We then correlated the presence or absence of these
variants with AMR phenotypes. These analyses are documented in an R notebook
(Antimicrobial_resistance_investigation.Rmd).
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Additional methods

We used ChatGPT to help write code and suggest wording ideas, which we then chose
small phrases or sentence structure ideas to use. We used Grammarly Premium to
help copy-edit draft text to match Arcadia’s style and to clarify and streamline text that
we wrote.

The dataset

SHOW ME THE DATA: Access our data, including the list of accession numbers
of the genomes for the pangenome, the SRA accession numbers of the strains in
the dataset, and the output of the variant-calling process, on Zenodo.

We initiated our effort to build a large genotype-phenotype dataset by querying the
Bacterial and Viral Bioinformatics Resource Center (BV-BRC) [23] to identify a large
cohort of E. coli strains with available genome sequence data and anti-microbial

resistance (AMR) phenotypes for at least one antibiotic.

We chose E. coli for our study primarily due to the availability of thousands of genomes
and extensively documented AMR phenotypes. Although similar data exist for other
global pathogenic bacterial species, the remarkable genetic diversity within E. coli —
with strains sharing only 20% to 40% of a core genome and possessing a wide array
of accessory genes [3][4] — makes it uniquely suited for our research. This diversity
allows us to interrogate this dataset using methods typically applied to interspecies
comparisons and traditional intraspecies studies.

Our cohort contains a wide diversity of strains
sampled over many years and countries

We identified a set of 6,983 E. coli strains with documented resistance or susceptibility
to 50 antibiotics or combinations of two antibiotics (for instance, a treatment that
includes both ampicillin and clavulanic acid). Genome sizes within this cohort ranged
from 4.07 Mb to 5.98 Mb, with a median of 5.09 Mb and a mean of 5.07 Mb (Figure 1, A).
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Correspondingly, the number of coding sequences (CDS) varied from 3,992 to 6,135,
with a mean of 5,069 CDS. These metrics reflect this species' typical genome size and
genetic diversity [24].

In addition to genetic data, we retrieved metadata information from the database,
including isolation country, collection year, and original host. Isolation country data was
unavailable for only four strains; the remaining strains came from 14 countries (Figure 1,
B), with the majority originating from the United Kingdom and Norway. Collection year
information was available for 4,910 strains collected between 2001 and 2017. Host
information was available for 3,922 strains, primarily isolated from humans and
sourced from five other hosts (cow, dog, pig, cat, and chicken).

The diversity of location, time of collection, and host species present in our cohort
demonstrates that our dataset isn't limited to a specific outbreak, environment, or
timeframe. Thus, the genetic diversity within our cohort may be more analogous to
species-species differences than the diversity observed in more closely related

populations.
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The worldwide isolated strains in our cohort span
the expected genome size range for E. coli.

(A) Genome size distribution (humber of base pairs).

(B) Map of the countries from which strains have been

isolated.

Our dataset includes susceptibility and
resistance data for many antibiotics

We evaluated the diversity and distribution of AMR phenotypes to gain further insights
into their patterns and prevalence within our cohort. This included organizing and



analyzing documented AMR phenotypes across strains and antibiotics (or antibiotic
classes) and identifying potential multidrug-resistant strains.

First, we assessed the number of antibiotics or antibiotic combinations for which
strains had documented AMR phenotypes. The majority of strains had known

phenotypes (either “susceptible,” “intermediate,” or “resistant”) for between eight and
11 antibiotics, and six strains had known phenotypes for only one antibiotic (Figure 2, A).
Notably, one strain had phenotype information for 33 antibiotics. We analyzed the
distribution of phenotypes for each antibiotic. Gentamicin had the highest number of
documented phenotypes (6,043 strains), and 20 other antibiotics had phenotypes for
more than 500 strains. We further focused on these antibiotics to evaluate the
distribution of phenotypes (Figure 2, B). For most antibiotics, strains predominantly

exhibited a “susceptible” phenotype, with some exceptions, such as ampicillin.
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Our cohort exhibits diverse AMR phenotypes across strains

and antibiotics.
(A) Distribution of the number of known AMR phenotypes per strain.

(B) Distribution of AMR phenotypes for antibiotics with AMR

information available in 500 or more.



(C) Word cloud of antibiotic classes associated with the most
resistant phenotypes.

Finally, we focused on the “resistant” phenotype, identifying 1,319 strains resistant to at
least one antibiotic, including 139 strains resistant to 10 or more. These resistant
phenotypes span 15 antibiotic classes; the most represented classes were penicillin,
cephalosporin, fluoroquinolone, penicillin/beta-lactamase inhibitors, and sulfonamide.
We identified 1,425 strains resistant to at least one antibiotic from three different
classes, indicating multidrug resistance.

Our study encompasses a broad spectrum of antibiotic phenotypes, including
susceptibility and resistance to a large number of differing antibiotics and many multi-
drug-resistant strains. While not developed in this work, we believe that this dataset
includes a diversity of phenotypic information that would allow us to identify
correlations of AMR phenotypes within and between antibiotic classes, thus
simplifying and improving predictions of AMR phenotypes.

We found broad genetic diversity across this
cohort consistent with the diversity found in
other E. coli populations

We identified genomic locations that vary across our cohort by first creating a
pangenomic reference, aligning sequence data from all strains to this reference, and
identifying locations that varied relative to the reference (variant calling). Given the
broad genetic diversity commonly found in E. coli, selecting a representative reference
genome was crucial. To this end, we constructed a pangenome from the 72 strains of
the ECOR collection, which encompasses the species’ natural diversity [6]. The
pangenome included intergenic regions (IGRs), which can play a critical regulatory
role, and coding sequences (CDS). The final pangenome comprised 32,441 genetic
sequences: 18,494 CDS and 13,947 IGRs. We further refer to these sequences as
contigs.

By mapping all the strains against this pangenome and conducting variant calling, we
identified 3,119,517 variants. This number was reduced to 2,451,184 after we filtered to

control for false positives (see “The approach” for details on our filtering strategy).



2,407,385 of these variants were single-nucleotide polymorphisms (SNPs), and 43,799
were insertions or deletions (indels). Furthermore, we identified 376,038 multi-allelic
variants, with the majority featuring two or three alternative alleles.

We further characterized the variants by their contig type (CDS versus IGR), assessed
the variant rate per contig, and analyzed variant distribution within the cohort to
identify likely rare variants and common variants. We detected variants in 85% of all
contigs (27,637 of 32,441), with a higher tendency for variation in CDS contigs (16,715
out of 18,494; 90%) compared to IGR contigs (10,922 out of 13,947; 78%). The variant
rate, the ratio of the contig length to the number of variants in that contig,
characterizes a contig’s disposition to variation. For example, a variant rate of three
suggests that variants occur every three nucleotides, on average. While variant rates
varied widely, indicating different propensities for variation among contigs, the median
variation rates were eight for CDS and 10 for IGRs, indicating slightly higher variability
in coding sequences.

Finally, we evaluated the prevalence of each allelic variant across the strain cohort,
measuring how often alternative alleles appeared. Notably, 19% of the variants
(527,686 variants: 452,357 in CDS, 75,329 in IGR) were found in only one strain,
indicating their rarity. Conversely, 6,167 variants (5,515 in CDS and 652 in IGR) appeared
in 6,350 strains or more, suggesting these represent the more typical genetic
composition of these contigs rather than true variants as they're found in at least 90%
of the strains.

Altogether, our analysis of the variants in the E. coli cohort highlights the extensive
genetic diversity within the species.

On average, around 40% of the variations in
CDS are non-silent

The diversity of genetic variants identified in our study cohort is extensive, and we
detected many variants within coding sequences (CDS contigs). However, we expect
only some of these to be impactful. Genetic variation in coding regions can lead to
silent mutations that don't affect the protein sequence, or hon-silent mutations can
alter protein sequence. To better understand the effects of these variants, we
performed variant annotation to distinguish between silent and non-silent mutations

within CDS contigs (see “The approach” for details).



We were able to annotate variants in 16,736 of the original 18,494 CDS contigs of the
pangenome. The incompleteness of our annotation is likely due to limitations in using a
pangenome in genome-based annotation algorithms and the exclusion of CDS that
are considered redundant with already annotated CDS. The missing CDSs represent
9% of the CDS of the pangenome, and the absence of annotations for these variants
is one limitation of this analysis.

Non-silent mutations alter protein sequence and are more likely to impact phenotypes.
We analyzed the 783,436 variants classified as non-silent, which included frameshift,
nonsense, and missense variants. Among these, 765,536 were SNPs, 17,900 were
INDELs, and 95,581 were multiallelic variants. Notably, 33% of these variants (258,194
variants) were rare and found in only one strain. Conversely, 325 variants were
prevalent in at least 90% of strains, suggesting these may be present in the majority of
E. coli strains and that the allelic states in the ECOR collection (used to create the

pangenome) are of lower prevalence.

Finally, we assessed the non-silent variant rate within each CDS contig to explore
these sequences’ functional and evolutionary dynamics. Contigs with many non-silent
mutations may indicate positive selection for these variants and suggest that CDS may
impact phenotypes that enhance survival in some settings. In contrast, contigs
predominantly containing silent variants are likely essential for cellular functions, and
non-silent mutations would be deleterious. In the average CDS contig, ~42% of
variants are non-silent (Figure 3, A). Furthermore, we found 316 contigs where non-

silent variants accounted for at least 90% of the variants and 117 contigs where non-
silent variants were less than 10% of the variants.

We used the Clusters of Orthologous Groups (COGs) database [25] to assign likely
functions to each of the CDS contigs (Figure 3, B). For both groups — those with high
and low non-silent mutation rates — most contigs were poorly characterized in this
database (156 contigs in the high non-silent mutation rates group and 45 in the low
rates group). However, for contigs associated with high rates of non-silent variants (>
90% of variants non-silent), the most represented COG categories were “Replication
and Repair” (COG L: 8.1% of COG annotations) and “Cell Wall/Membrane/Envelope
Biogenesis” (COG M: 4.2% of the COG annotations). Notably, these categories are
some of the essential mechanisms of antibiotic resistance [26][27][28]. Conversely,
the COG categories that are enriched in contigs associated with low non-silent variant
rates (< 10% of variants non-silent) were Intracellular “Trafficking and Secretion” (COG



U: 9.3%) and “Transcription” (COG K: 6.2%), essential cellular functions that, when
altered, can lead to significant detrimental effects and tend to be conserved [29].

Within this cohort, there are many non-silent mutations in coding regions. Contigs
associated with DNA replication, DNA repair, and cell wall biogenesis, functions
associated with biological processes that adapt to evade antibiotics, tend to have
higher rates of non-silent variants, consistent with E. coli’s reported adaptability.
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Figure 3

Analysis of non-silent variant distribution.

(A) Distribution of non-silent variant rate in the annotated CDS contigs. The ratio
on the x-axis is the fraction of non-silent variants within each annotated CDS
contig (per contig: non-silent variant / total number of variants).

(B) Distribution of COG functional categories among the contigs associated with
high (> 90% non-silent mutations in a contig — 316 contigs) or low (< 10% of non-
silent mutations in a contig — 117 contigs) non-silent variant rates. “Percentage”
indicates the percentage of CDS in each dataset associated with the COG
functional category. Stars identify the two COG functional categories (discussed
in the text) that were the most represented among the contigs with high or low
levels of non-silent polymorphisms. COG categories: A: RNA processing and
modification; C: Energy production and conversion; D: Cell cycle control and
mitosis; E: Amino acid metabolism and transport; F: Nucleotide metabolism and
transport; G: Carbohydrate metabolism and transport; H: Coenzyme metabolism;
I: Lipid metabolism; J: Translation; K: Transcription; L: Replication and repair; M:
Cell wall/membrane/envelope biogenesis; N: Cell motility; O: Post-translational
modification, protein turnover, chaperone functions; P: Inorganic ion transport
and metabolism; Q: Secondary structure; S: Function unknown; T: Signal
transduction; U: Intracellular trafficking and secretion; V: Defense mechanisms.



Assessing the veracity of the
dataset: Identifying genetic
variants associated with AMR

To evaluate the utility of our dataset in identifying polymorphisms associated with
phenotypes, we correlated the presence of non-silent variants in coding sequences
(CDS) previously associated with antimicrobial resistance (AMR).

We focused on resistance to three well-studied antibiotics: tetracycline,
chloramphenicol, and trimethoprim, and five genes associated with resistance to
these antibiotics. The genes tetA_1, tetA_2, and tetA_3 code for tetracycline efflux
pumps that expel tetracycline from the cell, thereby conferring resistance [30]. The
gene catA1, which encodes chloramphenicol acetyltransferase, confers resistance to
chloramphenicol by acetylating the antibiotic, thus preventing its binding to the
bacterial ribosome [31]. The gene dfrD codes for a variant of the dihydrofolate
reductase DhfR, the main target of the antibiotic trimethoprim. The DfrD protein can
have a lower affinity for trimethoprim than DhfR and compensate for the DhfR function,

conferring resistance to trimethoprim [32][33].

We identified 275 strains with non-silent variants in tetA_1, tetA_2, or tetA_3 genes. Of
these 275 strains, only 26 had a documented AMR phenotype for tetracycline, and all
26 were resistant. However, in the entire cohort, phenotype information for tetracycline
was available for 393 strains (including the 26 strains just mentioned), of which 237
were resistant and 156 were susceptible (Figure 4). We performed a hypergeometric
test to assess whether the set of 26 strains is significantly enriched for tetracycline
resistance. This test calculates the probability of randomly selecting 26 resistant
strains out of the 393 strains with available phenotype data. We found that the non-
silent variants in tetA_l, tetA_2, or tetA_3 are significantly associated with tetracycline
resistance (p < 0.001). The resistance of the remaining 211 strains lacking variants in
the tetA genes may be attributed to alterations in other tetracycline resistance genes,
including additional efflux pumps (tetB, tetC, tetD, and tetE) or ribosomal protection
proteins (tetM and tetO) [30].

When we investigated resistance to chloramphenicol, we identified 58 strains with
non-silent variants in catA7, but only two of these 58 strains had documented

chloramphenicol AMR phenotypes — both resistant. In the cohort, phenotype



information for chloramphenicol was available for 253 other strains with no variant
information, 72 of which were resistant (Figure 4). Given the small number of strains
with variants in the catA7 contig with an available AMR phenotype, we were unable to
find a significant connection between variants in catA7 and resistance to
chloramphenicol (p > 0.05, hypergeometric test). It's possible that the resistant
phenotypes of the strains lacking variations in catA7 are associated with variations in
other known chloramphenicol resistance genes, such as other cat genes or cml genes
[34].

Last, we assessed the possible genetic basis of trimethoprim resistance. We found
571 strains with non-silent variants in dfrD, and AMR phenotype information was
available for 40 of them (Figure 4). These 40 strains displayed both susceptible (19

strains) and resistant phenotypes (21 strains). In the whole cohort, trimethoprim
resistance data was available for 704 strains, including the 40 aforementioned strains.
Ultimately, we didn’t find a significant association between the presence of
trimethoprim resistance and non-silent mutations in dfrD (p > 0.05, hypergeometric
test). Across the dfrD gene, there were a total of seven non-silent alleles. One
possibility is that some of these non-silent alleles significantly impact the functioning
of dfrD while others do not. This potentially motivates a more targeted analysis of
these individual polymorphisms but is beyond the scope of this work.

Our analysis focuses on resistance to three antibiotics and five genes successfully
correlated genes known to influence tetracycline resistance but failed to identify genes
linked to chloramphenicol or trimethoprim. For the latter two, one non-trivial
explanation could be statistical power as the number of strains with documented
chloramphenicol resistance was small (two), and the number of non-silent loci in dfrD
(known to influence trimethoprim resistance) was numerous, possibly reducing the
statistical power of the test.
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Analysis of non-silent variants in known genes associated with

E. coli antimicrobial resistance.

Intersections of strains with non-silent variants in antibiotic
resistance contigs and available AMR phenotypes. Each Venn
diagram shows the intersections of strains that have identified non-
silent variants in resistance genes of the indicated antibiotic
(chloramphenicol, trimethoprim, or tetracycline) and corresponding
AMR phenotypes. The color of the intersection indicates the AMR
phenotypes observed for these strains (pale blue: susceptible,

darker blue: resistant).

Key takeaways

In this work, we've compiled a genotype-phenotype dataset from public databases for
around 7,000 E. coli strains, focusing on their anti-microbial resistance (AMR)
phenotypes. After retrieving AMR phenotypes for 50 antibiotics or combinations, we
performed variant calling for these strains against a custom pangenome generated

from 72 different E. coli strains.

The cohort features significant genetic diversity, with 2.4 million variants in 85% of the
pangenome's coding sequences and intergenic regions. We also identified non-silent
variants that could affect protein integrity and function. Specifically, we focused on
variants within genes reported to be associated with AMR, and we were able to find

resistant variants in known AMR-related genes.



Altogether, we hope this dataset will be a versatile resource for microbiologists,
geneticists, and evolutionary biologists who want to probe genotype-phenotype
associations or delve deeper into the genetic basis of AMR.

Challenges and limitations

Compiling this dataset presented multiple challenges, which led us to make specific
decisions that shaped the scope of our analysis. As a result, we may have excluded
some AMR genetic markers, making our dataset less comprehensive for a complete

analysis of antimicrobial resistance in E. coli.

We discuss these challenges, the choices we made in response, and the probable
limitations of the dataset that result from those choices here.

Incomplete data

We compiled data for around 7,000 E. coli strains, but AMR phenotypes weren't
available for all antibiotics and strains. For some antibiotics, like gentamicin or
ciprofloxacin, AMR phenotypes were available for over 6,000 strains. Unfortunately, for
most antibiotics, phenotypes were available for less than 1,000 strains, reducing the
utility of this dataset.

Choice of phenotype

AMR is one of the best-documented phenotypes for microbes, so it made a great
option for building a large-scale genotype-phenotype dataset. However, many AMR
genes are found on plasmids, contributing significantly to the rapid spread of AMR
resistance through processes like horizontal gene transfer [35][36]. Although our
pangenome contains likely plasmid sequences, it doesn't capture the full diversity of
plasmids in E. coli. Genome assembly from short reads doesn’t allow for the efficient
recovery of plasmid sequences, and the 72 ECOR strains [6] are unlikely to cover the
entire plasmid diversity within E. coli. Therefore, our dataset may only include variation

for some AMR genes.



Working with a pangenome

While using a pangenome doesn't fully capture plasmid diversity, it allowed us to
capture more of the genetic diversity in our E. coli cohort than using a single reference
strain. However, this choice, too, brought inherent challenges and further analytical
considerations worth discussing.

One maijor challenge is determining the number of species to include in the
pangenome. This choice depends on multiple factors. While covering most of the
diversity is desirable, adding more genomes increases the risk of inaccuracies due to
sequencing, assembly, and annotation errors. We chose to work with the ECOR
collection because it's been extensively studied, but even in this cohort, there are
reported sequencing and assembly errors [7]. While it includes strains from different E.
coli populations, it nonetheless leaves some diversity of the whole E. coli species
unaccounted for, possibly missing important information regarding the genetic basis
of AMR phenotypes.

Challenges also arise during the creation of the pangenome, including clustering and
classification of orthologous and paralogous genes and errors in automated gene
identification, which can introduce inaccuracies in the final set of sequences.
Additionally, programs designed for genome or pre-assembled genome processing,
such as Prokka [8] and Prodigal [20], might not perform as well with a pangenome. For
instance, CDS identification by Prodigal is informed by the genome structure and
organization and is optimized based on what’s expected to be a complete, non-
redundant set of ORFs in a prokaryotic genome. This reliance on a typical genome
structure could have led to the lack of annotation of some CDS in our pangenome,
resulting in potentially important missing information regarding variants and non-silent

variants in CDS regions, including potential AMR contigs.

Ultimately, our pangenome resulted in a reference sequence four to five times the size
of a regular bacterial genome, leading to a more significant computational load
compared to typical microbial genomics studies.

Despite these challenges, the pangenome allowed us to intentionally generate a
dataset that examines single-nucleotide variation in specific genomic locations and
encompasses the loss and gain coding regions between strains. This common
backbone was essential to investigate a cohort of E. coli strains, as E. coli is known for
its dynamic genome, characterized by frequent DNA loss and gain [3]. As a result,



individual strains in this dataset are somewhat similar to separate species where gene
gain/loss is a critical differentiator, but also resemble actively interbreeding individuals
where single-nucleotide polymorphisms are the primary form of genetic variation. This
complexity allows for analysis from both a phylogenetic and a population genetic
perspective. This data can serve as a testbed for methods that apply to the study of
genetic variation within and between species, with the goal of integrating these two
approaches more completely.

These challenges and considerations highlight the importance of accurately defining
the scope and ambitions of a genotype-phenotype study to rationally decide whether
a pangenome is more valuable than a single reference strain.

Computational resources and data limitations

Producing the entire dataset required significant computational power and runtime.
For instance, generating all individual variant calling files took a week with 50 CPUs,
and the data generated, including important intermediary files such as alignment files
and MPILEUP files, represented 15 to 20 terabytes. Such requirements inevitably limit
the number of genotype-phenotype datasets and studies for large populations.

This approach also limited the level of data and completeness of the information we
could save or generate. To reduce the size of the MPILEUP files, we included
information only for locations with aligned reads. Similarly, when identifying variants, we
saved information in the vcf.gz file only for locations where we identified an allelic
variant. This choice further limited our ability to call the reference allelic states in our
final variant population. Consequently, our final dataset in the variant calling format
(VCF) file is incomplete, as it only reports identified allelic variants. However, if further
investigations are needed, the missing information can be retrieved from the
associated BAM files.

Next steps

We have a few things in mind for using this dataset at Arcadia.

First, it’ll be an excellent candidate for testing and using our phenotype encoder [37]
and for carrying out phenotype-phenotype predictions. It'll provide an opportunity to



evaluate how the autoencoder from our previous work handles datasets with multiple
missing phenotypes. Biologically, it’ll offer deeper insights into the distribution and
correlation of AMR phenotypes by identifying interesting patterns of AMR phenotypes

associations between antibiotics and antibiotic classes.

Second, this dataset will be valuable for investigating gene-gene interactions and
building models to reconstruct gene networks from genotype-phenotype information.
This will enable a move from a single-gene definition of phenotypes to a better
characterization of epistasis. Again, the existence of details regarding gene-gene
interaction in antimicrobial resistance will allow us to assess the power and reliability of
these models. This would also provide better insights into the gene networks
underlying antimicrobial resistance.

Outside of Arcadia, we hope that microbiologists, population geneticists,
epidemiologists, and evolutionary biologists will also find this dataset valuable. We're
eager to hear from researchers using it to better understand antimicrobial resistance
mechanisms in E. coli, predict the emergence of resistance, or conduct genotype-
phenotype predictions in future outbreaks. Although AMR is the example phenotype
for this work, the extensive variant matrix we generated, mapping out the diversity
within this large E. coli cohort, isn't limited to studying AMR phenotypes. Researchers
can use it to identify the genetic basis of many other phenotypes in E. coli (across all
7,000 strains or a subset). We hope researchers will use this genotype mine to
investigate phenotypes like host association, metabolism, or stress response and
provide feedback on other interesting phenotypes to explore.
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