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Comparing gene
expression across
species based on protein
structure

We investigated protein structure predictions as an alternative to
protein sequence homology for comparing single-cell RNA-seq data
across species.
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Purpose

Gene expression drives the identity, behavior, and function of all cells. By comparing
gene expression across different species, we can identify genetic networks that are
shared or differ across species, allowing us to form hypotheses about the evolutionary
origins of diverse cell types. To do this, we must first group similar genes so we can
make accurate comparisons. This is traditionally done based on sequence homology.
We thought protein structural similarity might provide an alternative, and possibly more
relevant, basis for comparing cell type across species.
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We explored the performance of gene clusters inferred using either sequence or
structural similarity in mixing data from different species and integrating single-cell
RNA-seq data from mouse, frog, and zebrafish brain samples. Methods that are able
to accurately identify shared genes across species should allow us to identify cell
lineages that have shared ancestry — we would expect, for example, that frog, mouse,
and zebrafish neurons should express some overlapping set of genes. We found that
protein structural clusters preserved data set structure, but these initial attempts did
not merge homologous cell types across species better than methods based on
sequence homology. While this work was in progress, a conceptually similar approach
has apparently succeeded in merging related cell types across species, and we
suggest readers familiarize themselves with the protein language model-based
method called SATURN [1].

We are no longer actively pursuing this project, but the ideas may be of broad interest,
so we are sharing our concept and preliminary results. At the end of the pub, we further

discuss potential challenges and opportunities for anyone who may pursue this idea.

- All code, including analysis notebooks and outputs, is available in this GitHub

repository.

« Orthogroup and structural cluster files, plus feature count matrices for each

species and data set are available on Zenodo.

We’ve put this effort on ice! X

#HStrategicMisalignment

We decided not to pursue cross-species single-cell RNA-sequencing analyses in
the near term. Since pausing this work, more sophisticated methods have also
been released. We may revisit this topic in the future and are excited to see the
continued advancements in this field.

Learn more about the Icebox and the different reasons we ice projects.
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The motivation

Cells are a fundamental unit of biological organization, so the evolution of cellular
function is central to biological research. The conservation and divergence in cellular
phenotypes can reveal evolutionary origins and core functional features of cell types,
as well as unique innovations displayed in just a subset of species. For example,
understanding the evolutionary origins of different cell types in the nervous system
may allow us to better understand their physiological function and species-specific
differences. What neural genes and pathways are conserved across evolution and
which are specific to just one clade? How many neural cell types are shared across
species? How much can model nervous systems tell us about the human brain? The
answers to these questions may lie in existing gene expression data, but each species
is made up of a unique set of genes, preventing direct comparison. A method that
places cells from different species in a shared space, in the form of a shared multi-
species gene expression matrix, is needed to answer these questions. Such a method
would merge cell types across species and unlock cross-species transcriptomics, but
this remains a major challenge in bioinformatics [2].

Single-cell RNA-seq atlases — large data sets of single-cell transcriptomes spanning
an entire organism — are uniquely suited to study the evolution of cellular function
because they offer gene functional information, which we can compare directly across
species. These data sets allow us to evaluate how well gene abundance is correlated
with annotated cell types. However, comparing gene expression across species
requires a shared, multi-species reference space in which we can directly compare
gene expression. Genes from diverse species must be grouped into sets of similar
genes, which we call shared feature sets. The primary gene sequences are different
between species, along with overall genome architecture, so there is no
straightforward way to merge reference transcriptomes and generate a shared feature
set. Many factors, including the list of species being investigated, arbitrary similarity
cutoffs, and specific algorithm design choices add complexity to the problem, and as
a result, a number of manual and algorithmic methods have been developed and
applied to this problem [3][4][5].

Existing methods have often relied on single-copy orthologs — genes with only a single
gene copy found in each species used for comparison — making it difficult to compare
cell identities when genes have duplicated across different lineages. Moreover,

sequence-based methods can fail to detect remote, but shared, ancestry [6]. Methods



that avoid relying on single-copy genes or are able to group genes based on expected
function, rather than strictly by ancestry, could theoretically improve gene expression

comparison across species.

The i1dea

We decided to explore using protein structural predictions from the AlphaFold
Database rather than RNA sequences to create shared feature sets spanning multiple
species. We hypothesized that protein structural similarity might outperform gene
sequence orthology at merging cell types across species. If protein structure drives
protein function more than sequence, then protein structure similarity might better
capture functional conservation than sequence similarity across evolutionary
distances where remote homology detection is more prone to failure, especially at the
cell type level. First, previous approaches are often based on one-to-one-orthologs,
while our method creates collapsed groups of related genes based on structural
similarity, which may be a more relevant comparison for merging cell types. Second,
recognizing that protein structure space is less diverse than protein sequence space,
protein structure predictions might better represent protein function than sequence,
an idea supported by the recent success in using protein structure predictions for
gene functional annotation [7][8]. However, as we detail below, our results to date do
not appear to collapse cell types from different species into common clusters better
than using sequence-based approaches.

While this work was in progress, a related approach based on large protein language
models (PLMs) was shown to effectively merge cells from diverse species, and we
encourage readers to read their results. The method, SATURN, encodes protein
sequences with a protein language model, and proteins in embedded space can be
directly compared and clustered [1]. In a similar way, our approach uses AlphaFold-
predicted structures to make cross-species comparisons, although our initial
explorations did not appear to merge cell types effectively. We will discuss how these
approaches compare, possible explanations for the present difference in

performance, and why they may be superior to sequence homology for this task.



Methods

See detailed methods below or skip straight to the results.

BioFile handling

To coordinate analysis of data across species, we developed a Python package,
“biofile_handling,” which allowed us to programmatically organize files from different

species into a common structure. For more details, see the biofile_handling

documentation page. This package manages the download of files from remote

sources and provides an object-oriented way of interacting with diverse collections of
biological data. This package also helped standardize data access across Jupyter
notebooks to aid in exploratory analysis. We developed this bespoke package due to
the specific cloud-based computing strategy we used at the start of this project. In
retrospect, some of the core pipelines for this project might have been better
implemented using a workflow management system such as Snakemake or Nextflow.
For the purposes of reproducing this study, we have left the “biofile_handling” package
in place. You can find thorough details on how to reproduce our analyses in our GitHub
repository (DOI: 10.5281/zen0d0.8264057).

All code, including analysis notebooks and outputs, is available in this GitHub
repository.

Data acquisition

We downloaded publicly available single-cell RNA-seq data and cell type annotation
files for each species in this study. For each study, we selected a single sample of adult
brain scRNA-seq from three species (Danio rerio [9], Xenopus laevis [10], and Mus
musculus [11]) for our exploratory analyses.

We selected these studies because of the available data features — genes x cells
matrices, annotated cell type matrices, and predicted protein structures in the

AlphaFold2 database. These data also came from the same technology (Microwell-
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seq) which allowed us to more directly compare data from different species without
having to worry about platform-specific effects.

To generate peptide files for downstream analysis, we began by identifying the
genome version used for each of the original data sets. We used GRCz10 for the
zebrafish data, GRCm38.p3 for the mouse data, and JGI-XENLA9.2 from Xenbase for
the frog data. For each data set, we downloaded a FASTA file and GFF file of the gene
models for that genome and used Transdecoder (version 5.5.0) to generate cDNA files

for the genes. We also used Transdecoder to translate cDNA into peptide files using
default settings. For each gene model in our data set, we identified a corresponding
UniProtKB ID, if available, using the UniProt ID mapping API.

Organism
Study GEO | Genome

and accession version Genome FASTA

reference

Zebrafish

(Danio rerio) GSE130487 | GRCz10 GCF_000002035.5_GRCZz10_genomic.

91

Frog

Xenopus laevis) | GSE195790 | SC XENLA 9.2 genome.fa.gz
=== 1 XENLA9.2 * "

[10]

Mouse

(Mus musculus) GSE108097 | GRCm38.p3 | GCF 000001635.23_GRCmM38.p3_gen

[11]

Table 1

Public data sources we used in this study.

Generation of shared feature spaces

To compare gene expression across species, we 1) used a common feature space for
reference, and 2) assigned genes from each species to that common feature space.

We began by identifying the genome version used for each of the original data sets.
We used GRCz10 for the zebrafish data, GRCm38.p3 for the mouse data, and JGI-
XENLA9.2 from Xenbase for the frog data.
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To identify orthogroups (groups of genes related by ancestry, abbreviated “OG”), we
ran OrthoFinder (version 2.5.4) [12] using default settings on the Transdecoder peptide
files from all three species. We used the orthogroups representing all species
(Orthogroups.tsv), which we then used to map genes to orthogroups. For the joint
analysis where we mixed cells from all three species, we removed orthogroups that
lacked at least one representative gene from all three species.

To identify structural clusters (groups of genes with similar structures, abbreviated
“SC”), we downloaded all AlphaFold-v4 structures annotated with each species’ taxid
(Drer: 7955; Mmus: 10090; Xlae: 8355). We then used FoldSeek [13] to perform all-
versus-all TM-score structural comparison for all proteins from all three species. We
clustered the all-by-all comparison matrix using the GreedySet algorithm (“Cluster
Mode 0”) to generate structural cluster groups as a shared feature space. Of the
clustering options offered by FoldSeek, this method provided the most structural
clusters for our shared feature space.

Mapping single-cell RNA-seq count data to
shared feature spaces

To generate single-cell gene expression matrices in shared feature spaces, gene
counts were transferred from the original gene annotation to the appropriate shared
feature. For genes that mapped to the same shared feature, we summed the gene
expression values per cell. From here, we used the Scanpy [14] single-cell analysis
package to process count matrices for downstream analysis. For both gene
expression and shared feature set data, we used 40 principal components and 50
nearest neighbors as parameters inthe sc.pp.nearest_neighbors function. For
analysis of individual species, cells and genes were filtered as in a standard single-cell
RNA-seq workflow. For details, see the included analysis notebooks.

Joint embedding space generation

To generate a joint embedding in either OG or SC feature space, we tried to select
features that were differentially expressed in multiple species. We began by identifying
the top differentially expressed (“DE”) features for each cluster in the single-species
analyses. For our results in Figure 5, we took the top 200 DE features for each cluster
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in single-species OG or SC space and generated a list of features for each species
individually. We then took the intersection of those feature lists as our “shared DE
features" list, which we used to filter our data and build a joint embedding space [see

example in this Google Colab notebook]. We used scanpy’s built-in connector

Harmonypy to harmonize the gene expression by species. For Figure 5, Supplemental

Figure 1, we varied the number of top DE features per cluster from 100 to 300 in
increments of 50, following the same approach with identical Scanpy parameters as
used in Figure 5.

Results

SHOW ME THE DATA: Orthogroup and structural cluster files, plus feature count
matrices for each species and data set are available on Zenodo.

Sequence and structural feature sets capture
species-specific transcriptome patterns

To test whether shared feature sets defined by protein structural similarity can merge
multi-species single-cell transcriptomes, we analyzed a multi-species data set
generated by a single research group using a common library prep methodology [9]
[10][11]. We collected publicly available single-cell RNA-seq data from whole post-
embryonic (adult or juvenile) brains of zebrafish (Danio rerio), frog (Xenopus lavis), and
mouse (Mus musculus) samples and developed parallel workflows to process gene

annotations into two kinds of shared feature sets (Figure 1):

- OG — Orthology groups: For sequence comparisons, we used OrthoFinder [12]
across the three species [12] to generate shared feature sets (orthology groups
“OG”) (Figure 2, A).

o SC — Structural clusters: For structure comparisons, we performed pairwise
alignment of genome-wide predicted protein structures from the AlphaFold2
database [15][16] for all three species using FoldSeek [13], producing an all-by-all

matrix of protein structure similarity scores. Clustering this matrix yielded sets of
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structurally similar proteins (structural clusters “SC”), a structural analog to

sequence orthologs.

With comparable shared feature sets in hand, we transferred gene counts from the
original single-cell RNA-seq count matrices to the cross-species shared feature sets
for analysis (see “Methods”). Overall, we have replaced each organism’s specific
reference transcriptome with a new, merged reference based on shared feature sets.
The distance between cells from different species can be determined based on
differential abundance of shared feature sets. We can directly visualize and compare
multiple species in this shared space.
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Overall problem and solution strategies.

Comparing genes between species can be difficult, as the
composition of each genome varies. How can we identify
groups of shared genes between species? We explored
two approaches: using OrthoFinder to find groups of genes
with similar sequences that are presumably orthologous
(diverged from the same ancestral gene copy), or using
Foldseek to find groups of genes with similar predicted
protein structures. We evaluated how well these groupings
preserve biological data and used them to directly
compare multiple species.

We first investigated preservation of gene expression features in the orthology group
(OG) and structural cluster (SC) feature spaces compared to the original gene



expression space. Compared to gene expression space, OG and SC feature spaces
faithfully capture key structures in the data sets, maintaining relationships between
cells for a given species (Figure 2, B-J and Figure 3), as judged qualitatively by overall
highly similar patterns of clustering and embedding regardless of the shared feature
set. Using the un-transformed zebrafish data set as an example, we identified genes
using differential expression analysis to determine whether genes appeared to retain
their overall expression profile in the new feature spaces. In the original data, a cluster
of cells annotated as radial glia and expressing the gene sicia2b is readily apparent
(Figure 2, B-C, pink outline). In an embedding of zebrafish cells based on the OG or SC
feature sets, the same group of cells, with a similar abundance profile, is marked by
representation of orthogroup OG0004873 or structural cluster SC1105 (Figure 2, C, F,
I). Similarly, a cluster of cells annotated as neurons, and marked by the gene apinra, is
preserved in both OG and SC feature spaces and marked by features specific to the
OG and SC spaces, 0G0004819 and SC21546 (Figure 2, D, G, J). We also observed a
linear relationship between expression of s/lc1a2b and aplrna and abundance of their
respective OG and SC feature sets (Figure 2, F-G, I-J inset panels). These results
suggest that the “expression” of individual genes is preserved in the new feature
spaces.
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Retention of gene expression information in orthogroup and structural

cluster embeddings.

(A) Summary of our overall pipeline for generating shared feature spaces. To

generate orthogroup (OG) spaces, we used OrthoFinder. To generate

structural cluster (SC) spaces, we clustered AlphaFold structures of proteins

using FoldSeek.



(B) UMAP plot of zebrafish cells in gene feature space, colored by cell type.

(C) Plot from (B) colored by expression of sicia2b.

(D) Plot from (B) colored by expression of aplrna.

(E) UMAP plot of zebrafish cells in OG feature space, colored by cell type.

(F) Plot from (E) colored by abundance of O0G0O004873, which contains
sicla2b.

(G) Plot from (E) colored by abundance of 0G0004819, which contains
aplrna.

(H) UMAP plot of zebrafish cells in SC feature space, colored by cell type.

(1) Plot from (H) colored by abundance of SC1005, which contains sic1a2b.

(J) Plot from (H) colored by abundance of SC21546, which contains aplrna.

Inset plots in (F, G, |, J) show correlation in expression of the original gene
feature (x-axis) versus the abundance of respective OG or SC feature that
contains that gene (y-axis).

For information about the contribution of genes from each species to
orthogroups and structural clusters, see Supplemental Figure 2.1 (opens in
new tab).

Seeking further validation that shared feature sets preserve biological information, we
compared cell clusters from our analysis with the published cell type annotations
provided by the original authors. These annotations may not comprehensively
represent all the cell types present in the data set, but we used them to understand
how our embedding spaces could affect interpretation of cell identities. When
analyzing cells using the original gene feature space, we recover cell clusters and
embedding spaces that are highly similar to the published cell type annotations (Figure
3, A-C). Clustering results are also in broad agreement with the original cell type
annotations, meaning that relationships between cells are generally preserved in the



reduced OG and SC spaces (Figure 3, D-1). For example, in the original gene feature
space, clusters 1, 4, and 12 predominantly contain microglia, macrophages, and apocil-
high microglia, respectively (Figure 3, C). We observed that when we embedded cells
into shared feature spaces, clusters occasionally merged into new clusters. For
example, in OG feature space, the three immune cell types above are grouped
together in Leiden cluster 1; in SC space (Figure 3, F), these three cell types are

grouped in cluster O (Figure 3, I). In general, we observed that cell types with known
functional similarities (immune cells, glia, neurons) tended to “collapse” together in
each of the feature spaces, potentially reflecting shared gene expression signatures
between those cell types. Overall, relationships among cells appear to be broadly
conserved in our OG and SG shared feature sets.
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Orthogroup and structural cluster embeddings retain cell type
information.

(A) UMAP plot of zebrafish cells in gene feature space, colored by Leiden

cluster.

(B) Plot from (A), colored by cell type.

(C) Confusion matrix comparing the proportion of cells of each annotated
cell type in each Leiden cluster in gene space. Heatmap hue corresponds to
the fraction of cells of each cell type that contributed to each Leiden cluster.

Each row adds up to 1

(D) UMAP plot of zebrafish cells in OG feature space, colored by Leiden
cluster.

(E) Plot from (D), colored by cell type.

(F) Confusion matrix comparing the proportion of cells of each annotated
cell type in each Leiden cluster in OG space.

(G) UMAP plot of zebrafish cells in SC feature space, colored by Leiden
cluster.

(H) Plot from (G), colored by cell type.

() Confusion matrix comparing the proportion of cells of each annotated cell
type in each Leiden cluster in SC space.

You can browse the heatmaps in this plot interactively by opening these links
(opens a new tab):

(C) Danio rerio Leiden clusters-vs-celltypes confusion matrix

(F) Danio rerio Leiden clusters-vs-orthogroups confusion matrix

() Danio rerio Leiden clusters-vs-structural clusters confusion matrix
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For versions of these plots that examine the Mus musculus and Xenopus
laevis data, see Supplemental Figure 3.1 and Supplemental Figure 3.2 (links

open in new tabs).

How do cell clusters in OG and SC feature spaces compare to gene space? Are the
collapsed clusters functionally meaningful? We used Sankey plots to highlight how
clusters of cells are maintained or altered based on the shared feature set used
(Figure 4). These plots show the proportion of cells from each original cluster in gene
feature space that were placed into each cluster in the shared feature spaces. For
each original cluster, we assigned a “primary” destination cluster for which the
greatest number of cells in the original cluster arrived in the new feature space,
labeled as a gold Sankey plot band. Other destination colors are labeled using a beige
Sankey plot band.
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Figure 4

Cell clustering effects in orthogroup and
structural cluster embeddings differ by species.

For each row, the left plot shows the comparison of
Leiden clusters in gene space to Leiden clusters in OG
space.

The right plot shows the comparison of Leiden clusters
in gene space to Leiden clusters in SC space.



To the right of each plot, shared feature space clusters
are annotated with one of three icons indicating that it
is a “retained” cluster, a “collapsed” cluster, or a

“novel” cluster - see KEY at the bottom of figure.

(A) Sankey plots for zebrafish cells.

(B) Sankey plots for frog cells.

(C) Sankey plots for mouse cells.

(D) Summary of proportion of retained, collapsed, and

novel clusters for each species in OG space.

(E) Summary of proportion of retained, collapsed, and
novel clusters for each species in SC space.

You can browse the Sankey plots in this image
interactively by opening the following links (opens in a

new tab):

(A, left) Danio rerio genes-vs-orthogroups Sankey plot

(A, right) Danio rerio genes-vs-structural clusters

Sankey plot

(B, left) Mus musculus genes-vs-orthogroups Sankey
plot

(B, right) Mus musculus genes-vs-structural clusters
Sankey plot

(C, left) Xenopus laevis genes-vs-orthogroups Sankey

plot

(C, right) Xenopus laevis genes-vs-structural clusters
Sankey plot
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We categorized each cluster based on whether it was 1) a “retained” cluster with cells
primarily from a single cluster in gene space; 2) a “collapsed” cluster with major
contribution of cells from multiple clusters in gene space; or 3) a “novel” cluster with
minor contributions of cells from multiple clusters in gene space (Figure 4). Notably,
while we observed many collapsed clusters in both OG and SC spaces in all three
species, we observed an enrichment of novel clusters containing mixtures of cells
from multiple cell types in the SC space. (Figure 4, D-E). The relative proportion of
collapsed versus novel clusters varied between species. For example, zebrafish cells
in OG feature space produced five collapsed clusters and zero novel clusters, whereas
the same cells in SC feature space produced nine collapsed clusters and eight novel
clusters. Gene, OG and SC feature spaces are not equivalent, and collapsing based on
feature similarity is a potentially valuable way to embed and understand cellular
information.

Overall, we observed that embedding cells into different shared feature spaces
resulted in broadly concordant patterns of clustering and preservation of feature
abundance. By converting genes to either orthogroups or structural clusters, we
introduced some degree of distortion to our data in a signal-dependent manner. The
degree and nature of this distortion varied in the orthogroup and structural cluster
feature spaces, and we have not systematically explored OG and SC clustering
parameters to understand these spaces well. Shared feature abundance can often be
rationalized in terms of gene expression, and each species appears to embed well into
its species-specific OG or SC feature space. We next turned to embedding multiple
species simultaneously.

Embedding multiple species only marginally
merges cell types

After confirming that orthogroups (OG) and structural clusters (SC) largely preserve
structure in scRNA-seq data, we investigated how these shared feature sets might
facilitate cross-species analysis of cell identity and feature set abundance. We
implemented a pipeline to generate a feature set capable of mixing cells from different
species using OG or SC feature spaces into a joint embedding (Figure 5, A). To create
a list of features used in the joint embedding, we began by identifying the top 200
most differentially expressed (DE, see “Methods”) features in the single-species OG or
SC analyses. We took the lists of top DE features from each species and used the



intersection of features between all three species — the most differentially abundant
and mutually shared features — and used this list as the starting point for our analyses.
We thought that selecting only features which are differentially expressed in all
species would reduce differences between species and produce a more merged
embedding space. After filtering out low-abundance features and identifying highly
variable genes through Scanpy (see “Methods”), we used the Harmony Python
package to “batch-correct” features by species. This resulted in a joint embedding
space where we could jointly examine cells from multiple species.
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(A) Summary of pipeline for generating joint cell embeddings across
species.

(B) UMAP plots of cells from all three species in OG feature space, colored

by Leiden cluster, species, and cell type respectively.

(C) UMAP plots of cells from all three species in SC feature space, colored
asin (B).

(D) Summary of species composition for Leiden clusters in OG space. Ring
plots on the right show the proportion of cells from each species per Leiden
cluster. Bar plot on the left shows the number of clusters with 1,2, or 3
species’ cells present.

(E) Summary of species composition for Leiden clusters in SC space, as in
(D).

For a breakdown of how the number of “top genes” used for generating the

joint embedding affects the mixing of cells, see Supplemental Figure 5.1

(opens in new tab).

You can browse the scatter plots from Figure 5 interactively using the widgets below:
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Each cell in this space is represented as a point. You can hover over the
points to see the cell barcode, cell type, and Leiden cluster associated
with each cell. You can also toggle the data overlay that colors the plot
using the drop-down menu to switch between views that color cells by
Leiden cluster, species, and cell type. Clicking and selecting an area
allows you to zoom in on a group of cells. Double-clicking returns the
zoom to the original size. Clicking on an entry in the legend below the
drop-down menu toggles the visibility of each group of cells. Double-

clicking on an entry hides all categories other than the selected group.
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This plot shows the same cells from the previous interactive plot based on
their position in the structural cluster embedding. Notably, cells from the
three species are not as well-mixed as in the orthogroup space.

We compared and analyzed the resulting OG and SC joint embedding spaces to
understand their relative performance (Figure 5, B-C). In OG space, cells from three
species appeared to be moderately mixed, with analogous cell types from different
species appearing to mix in the same clusters (Figure 5, B). SC space showed some,
but noticeably less, mixing across species. For example, radial glial and astrocyte cell
identities from all three species appeared to be mixed in OG cluster 9. Among the 19
clusters in the OG space, 15/19 (79%) contained cells from all three species in the
analysis (Figure 5, D), compared to only 5/21(24%) in the SC space (Figure 5, E).

The apparent difference in performance between OG and SC space in creating
“mixed” clusters could be caused by a variety of factors, including the representation
of different species in each shared feature group, the size distribution of feature
groups, and many other parameters. To understand the impact of the starting shared
DE feature count on each embedding space, we sampled the top 100, 150, 200, 250,
or 300 genes from each cluster from each species in either OG or SC space, and used
these lists as starting points for new embedding spaces (Figure 5, Supplemental

Figure 1). We observed that varying the number of top DE features we used had a linear
relationship with the resulting number of starting DE features for the shared feature
space. The number of shared DE features in both OG and SC space remained
comparable (Figure 5, Supplemental Figure 1, A, C). Notably, OG spaces appeared to

generally have more clusters containing cells from all three species, whereas SC
spaces appeared to have more clusters containing cells from just one species across
all our analyses. This suggests that the differences in OG and SC performance are
robust to variations in the starting number of shared DE features used to build the joint
embedding.

To further examine the harmonization of cells across species in the joint embedding
spaces, we examined the degree of concordance in cell type annotations across the
three species (Figure 6). We observed that in the OG joint embedding space, a few
clusters displayed similar representation across all three species. For example, OG
cluster O contained immune cells (macrophages and microglia) from all three species;
OG cluster 7 contained neurons from all three species; and OG cluster 9 contained
radial glia and astrocytes from all three species. These results suggest that our OG
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joint embedding pipeline appears to be able to mix cells of different species to some
degree. We saw comparable clusters in SC space for the three broad cell types found
in OG space: SC cluster 1 contained immune cells, SC cluster 7 contained neurons,
and SC cluster 9 contained radial glia and astrocytes. These results suggest that while
OG and SC spaces seem to differ in their ability to mix cells across many identities,
there may be “core” groups of features that are readily comparable between the two
approaches.
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Figure 8

Multiple cell identities are shared between species using both
sequence identity and structural similarity approaches.

(A) Confusion matrix comparing the proportion of cells of each annotated
cell type from all three species in each Leiden cluster in OG space. Heatmap
hue corresponds to the fraction of cells of each cell type that contributed to
each Leiden cluster. Each row adds up to one. Dotted lines highlight three
clusters of interest that appear to be composed of Immune, Neuronal, and
Radial glial/ astrocyte identities. Solid boxes highlight cells that appear to
contribute to the identity of the cluster.



(B) Confusion matrix comparing the proportion of cells of each annotated
cell type from all three species in each Leiden cluster in SC space, as in (A).
Dotted lines highlight three clusters of interest that appear to be composed
of immune, neuronal, and radial glial/astrocyte identities. Solid boxes
highlight cells that appear to contribute to the identity of the cluster.

You can browse the heatmaps in this plot interactively through the following
links (opens a new tab):

(A) Confusion matrix of cell annotations from mouse, zebrafish, and frog

versus | eiden clusters in orthogroup space.

(B) Confusion matrix of cell annotations from mouse, zebrafish, and frog

versus Leiden clusters in structural cluster space.

Discussion

We have developed an approach to merge cell types across species using protein
structural similarity as a basis for comparing gene expression. By mapping genes to
groups of similar protein structures, we cast transcriptomes into a common reference
space, even when starting with multiple species. Our initial investigations presented
here only partially merge cells from multiple species from a Microwell-seq data set.
There are many potential reasons for the overall lack of merging, and we discuss some
of these in the “Challenges” section below.

Shared feature set performance

Shared feature sets have two purposes in the context of this study. First, they are
interesting objects in which to compare genes across and within species. Depending
on the method of compression, we may be able to infer evolutionary relationships like
orthology, convergence, and functional duplication. Second, shared feature sets are
useful for mapping cell types across species from single-cell gene expression data.
We have shown that mapping reference transcriptomes to groups of orthologous (OG)
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or similar (SC) genes preserves single-cell transcriptional information, and it is very
natural to produce OG and SC shared feature sets that span multiple species. In the
case of SATURN, protein embeddings from a protein language model are clustered
into yet another type of shared feature space, with apparently very good results in
merging cells across species.

But there are limits to the utility of shared feature spaces. They can distort gene
expression in complex ways, and they do not represent true functional equivalence
across or within species. It is important to note that shared feature sets (or
“macrogenes” in the parlance of SATURN) do not reduce the burden of exploring
single-cell expression data at the gene level, and including multiple species only
increases the complexity of these data sets. However, shared feature sets are useful
for identifying homologous cell types, and they conveniently group genes in a
meaningful way that is useful for downstream gene-level analysis.

Our efforts thus far yield some degree of mixing between cells of different species in
joint embedding spaces. While it is possible to combine cells from many species into
one data set, clustering and embedding algorithms easily identify species-specific
differences. Our attempts to use regression or a variety of single-cell integration
methods generally fail to merge cell types across species. Feature set selection and
batch correction to force merging between species may produce misleading results.

While it is important to merge homologous cell types, we believe it will be more useful
for the community to explore methods that compare cell types with minimal distortion
to the underlying gene expression data. Once homologous cell types have been
identified, we need downstream tools that are able to make cross-species
comparisons on data that has not been batch-corrected. After all, these cells are from
different species and the differences that are regressed out for the purposes of
merging could be biologically meaningful. Rather, we need to understand the
components of gene expression that drive differences across species — adaptation,
drift, technical effects, functional compensation, etc. — to reconstruct the history and
meaning of cell function evolution.

Further work is required to determine if the OG and SC feature spaces are in fact very
good spaces in which to compare multiple species. Unfortunately, we lacked a working
example of merging across species during the development of this work, so it was
difficult for us to debug our approach. If we were to resume this project, we would start
by attempting to reproduce the results of the SATURN paper, followed by evaluating



the differences between shared feature sets based on sequence orthogroups, protein
language models, and protein structural models in a more controlled setting.

It is also possible that, even with further development, we may discover fundamental
differences in the nature of structure- and sequence-based comparisons. One
interpretation of our results could be that the absence of cell type merging using
structures is caused by fundamental biological differences. Given that sequence-
structure relationships are known to be nonlinear, structures might actually be more
dissimilar than expected based on sequence (e.g., [17][18]). Therefore, failure to merge
cell types using structures could be indicative of true functional differences in cell
behavior or physiology. Across evolutionary time, the relationship between cell identity
and structure might differ. Such possibilities are ripe for future exploration.

Merging cell types across species

When comparing cells across species in a shared reference space, a perfect merge or
overlap of cell types across species is not necessarily desirable. Biological differences
between species should be preserved, and it may be expected that homologous cell
types will not merge together in a shared embedding space. Furthermore, efforts to
force data into constrained topologies can introduce artifacts and mask real biology.
Finally, methods that claim to integrate or harmonize data from multiple experiments
cannot distinguish between biological and technical effects, and they must be
employed with caution in the course of single-cell analysis. Rather than methods that
can mash cells into recognizable clusters, we need high-quality data sets that can be
compared with minimal batch correction or distortion, along with workflows that
recognize when to employ batch-corrected versus uncorrected count data.

Comparison to SATURN

The SATURN package introduces a concept of “macrogenes” that are exactly
analogous to the shared feature sets discussed here. Rather than grouping genes
according to their corresponding protein structural similarities, SATURN instead
creates macrogenes based on protein embedding similarity. Protein embeddings are
the output of protein language models. They are a vector representation of the protein
sequence, and crucially these vectors can be directly compared in protein embedding



space. We in fact wanted to try this approach in the course of our work, but we focused
on protein structures as they are widely available via the AlphaFold database. In
addition to using protein language models, SATURN employs sophisticated methods
to weight the contribution of each gene to the set of macrogenes, and they employ an
autoencoder to generate latent cell embeddings while we used more standard
dimensionality reduction and batch-correction methods. We have not yet deeply
examined the performance of SATURN or been able to compare the performance of
protein embeddings versus protein structural predictions in this setting. We are very
encouraged by the results from SATURN, and we look forward to exploring its
capabilities and putting it to use.

Challenges

We faced a number of challenges in the course of working on this project, many of

which were technical rather than scientific.

1. Data acquisition and sanitization. For the analysis we've shared in this pub, we
used data generated primarily by a single laboratory (the Guo lab at Zhejiang
University) on a common sequencing platform (Microwell-seq). However, during
the course of this work, we also downloaded and explored data from many
different sequencing platforms (Drop-seq, 10x Chromium, inDrop), organisms
(mouse, human, bearded dragon, turtle, frog, axolotl, salamander, zebrafish), and
research groups. We observed that sequencing data from different research
groups had considerable variability in the availability of code, accessibility of data,
quality of documentation, and formatting of files. These differences make it

challenging to reproduce or even understand previously published work.

2. Data quality. Among the data sets we examined, there was also substantial
variability in data quality. Some data sets contained large numbers of low-read
count cells, or large numbers of small samples that required batch correction.
Without analyzing the data, it was not usually straightforward to know whether it
would be useful. The difficulty in accessing data from different sources was an

additional barrier to analysis.

3. Computational infrastructure. Single-cell sequencing produces very large files
(tens to hundreds of GB) that require large amounts of RAM to load and analyze.

We ultimately used the Cloud9 platform from Amazon Web Services to generate



remote computing environments capable of analyzing these data, but analyzing
moderately-sized scRNA-seq data (~10,000 cells) requires moderately powerful
computing (> 16 GB RAM), which can be a barrier to exploring this type of data.

Overall, these challenges brought to light a contradiction in the current state of single-

cell sequencing studies. Many papers argue that the utility of their work comes from

generating data resources for the broader scientific community. Yet these same

studies often provide few practical ways to access and analyze their data. Others have

highlighted this contradiction through a variety of meta-analyses [19][20].

From our experiences working with these data, we believe that single-cell RNA

sequencing studies could benefit from the following changes to make the data more

usable:

1. Standardization of data formats. Read count matrices for scRNA-seq data are

archived in formats including plain text TXT, CSV, or TSV files; platform-specific
CellRanger, or Drop-seq formats; compressed formats such as LOOM or H5AD;
and numerous other schema. To facilitate ease of data access, we would
recommend scientists share read count matrices as CSV files or HS5AD files, as
these formats are more broadly accessible to those intending to utilize the data.
Often forgotten, gene names must be included with the genes x cells matrix, as a

separate file or as the index of a data matrix.

. Improved software and code documentation. Software and code used for
single-cell sequencing analysis vary in their level of documentation. This variability
can be a consequence of the degree of familiarity of individual researchers with
programming, the amount of time that documentation requires, and limited
oversight of code quality and documentation. We would recommend that authors
use GitHub to centralize code for their analyses and Conda, Docker, or executable
notebooks (Binder, Google Colab) to manage computing environments. Free and
publicly available resources through The Carpentries and other organizations can
help researchers less experienced with programming to make their code and
software more accessible. For all projects, downstream users should be able to
reproduce and extend the initial analysis, requiring planning for new users, posting
to public repositories, and providing documentation, code, and working examples

or tutorials.

. Greater oversight. If cell atlases and other scRNA-seq studies are to live up to

their oft-promised impact, it is imperative that researchers and publishing


https://datacarpentry.org/

organizations hold each other accountable for producing work that is useful to a
broad variety of scientists. Some publishers have adopted frameworks for data

sharing such as the eLife MDAR Framework. Data and metadata standards

catalogs such as FAIRsharing could help produce better guidelines for data

access and reproducibility for scRNA-seq data.

We've tried to provide relatively comprehensive data, code, and software
documentation following the goals laid out by Arcadia’s Software team:

1. Data. You can access the orthogroup and structural cluster files, as well as the

feature count matrices for each species and data set, in this Zenodo record.

2. Code. The code used for generating all of our analyses and components of

figures is available in this GitHub repository.

3. Software documentation. In our GitHub repository, we explain how we

conducted our analysis through a collection of Jupyter notebooks. The software

packages we used for our analysis are collected in this Conda environment.

4. Data exploration. We have built a number of interactive HTML visualizations for
our data using Plotly embedded in the text of this pub, as well as a Google Colab
notebook that users can use to download and explore the joint embedding spaces

generated by this analysis.

Next steps

We decided to “ice,” or pause, this project in the course of our changing research
priorities. Our code and documentation serve as a snapshot of this project and contain
areas that are incomplete or suboptimal, such as the “biofile_handling” framework.
However, we can always pick up our work in the future as the need arises.

We plan to apply the techniques and insights we gained from this exploration to more
near-term efforts within Arcadia. For example, we're interested in continuing to use
comparisons between protein sequence and structure embeddings to understand the
function of diverse genes [21]. The challenges we faced in using publicly available
code and data have also strengthened our commitment to making our software usable

and reproducible.


https://elifesciences.org/inside-elife/2e04157e/elife-latest-the-mdar-framework-a-new-tool-for-life-sciences-reporting
https://fairsharing.org/
https://research.arcadiascience.com/software
https://zenodo.org/record/7838976
https://github.com/Arcadia-Science/glial-origins/tree/v0.0.1
https://github.com/Arcadia-Science/glial-origins/tree/main/notebooks
https://github.com/Arcadia-Science/glial-origins/blob/main/env/glial_origins_tidy.yml
https://colab.research.google.com/drive/1EVworofkY_-ClFfTmvHdjpLChFG4-sDP?usp=sharing
https://colab.research.google.com/drive/1EVworofkY_-ClFfTmvHdjpLChFG4-sDP?usp=sharing

We're sharing these preliminary results as part of our commitment to open science
and to maximizing the utility of our work. While we would need continued work to fully
evaluate and understand these methods, we hope the analyses and code we've

shared can be a starting point for others interested in exploring this space.

Opportunities for follow-up

If you are interested in building on this foundation, we suggest more quantitatively
comparing this approach to standards in the field such as SAMap or SATURN,
exploring the parameter space of clustering algorithms, and testing these methods on
diverse data sets.

Weigh in!

We'd love to hear from you, especially about the following: Have you used structural
homology as an alternative to sequence homology in your research? Do existing cell
atlases contain sufficient depth of coverage in cell types and transcriptomes to make
evolutionary comparisons? How can our community improve its data collection and
sharing practices to make meta-analyses like this more tractable?

If you have thoughts to share, please don’t hesitate to leave a comment!
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