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How can we biochemically
validate protein function
predictions with the
deoxycytidine kinase
family?

The human deoxycytidine kinase, a member of the nucleoside
salvage pathway, has been studied extensively. We'll use this family to
assess our structure-based protein clustering tool,
ProteinCartography. We'd love feedback on how we might work with
this protein for validation.
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Purpose

We created ProteinCartography to computationally compare protein structures from a
single family across many different species [1]. ProteinCartography identifies proteins
similar to an input and compares the structures of each protein to every other protein

to produce an interactive map with clustering information overlaid. In a previous pub,
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we began formulating a plan to validate ProteinCartography by testing two
foundational hypotheses: proteins within clusters will have similar functions and
proteins in different clusters will have different functions [2].

In this pub, we outline our ProteinCartography results for one of the protein families
we’ve chosen to use for validation, deoxycytidine kinases, which we selected because
it's been previously biochemically studied and produced results with many clear
options for how to test our hypotheses [2].

We're seeking feedback regarding how we might approach in-lab validation in this
family, especially from those who've previously worked with deoxycytidine kinase
proteins.

- This pub is part of the platform effort, “Functional annotation: mapping_the

functional landscape of proteins across biology.” Visit the platform narrative for more

background and context.

« This pub is part of our validation strategy series of pubs that starts with “A strategy

to validate protein function predictions in vitro.” We're also considering Ras GTPases

as an orthogonal protein family for validation. To learn more about them, visit the

accompanying_pub [3].

- The ProteinCartography pipeline used to run these analyses is available in this
GitHub repo. To create the custom overlays, we used this notebook and added our
custom color dictionaries, which can be found in the associated Zenodo

repositories.

- The data associated with this pub, including ProteinCartography results for the

deoxycytidine kinase family, can be found in this Zenodo repository.
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Background

Why use deoxycytidine kinases?

Our initial validation of ProteinCartography is intended to test the two foundational
hypotheses that proteins in the same cluster have similar structures and functions and
that proteins in different clusters have differing structures and functions. To do this
rapidly and in a straightforward manner, we began with proteins that had been
previously biochemically characterized. We started with the 200 most well-studied
human proteins [4]. Other factors we considered in our protein selection decision were
the length of proteins and the quality of the available AlphaFold structures. The pLDDT
(predicted local distance difference test), computed by AlphaFold, is a per-residue
measure of the confidence of a model structure [6]. This score ranges from O to 100,
with higher scores indicating greater confidence. In our case, we focused on proteins
shorter than 1,280 amino acids, a length limit set by AlphaFold, and proteins with a
pLDDT score higher than 80. Model structures in this pLDDT score range are typically
considered high-confidence.

Taking into account each of our selection criteria [2], we chose to focus on the human
deoxycytidine kinase. As of this writing, there are 47 Protein Data Bank (PDB) entries
for this protein, which places it among the 200 human proteins with the most solved
structures. Additionally, this protein family has commercially available assay kits and it
produced ProteinCartography results with clearly defined clusters that would allow us
to test our foundational hypotheses (Figure 1).

What do deoxycytidine kinases do and why are
they important?

Deoxycytidine kinase (dCK) has an essential role as a nucleoside kinase, critical in
producing precursors for DNA synthesis [6]. The enzyme is crucial in the nucleoside
salvage pathway, primarily phosphorylating deoxycytidine and converting it into
deoxycytidine monophosphate [7]. The enzyme can also convert the nucleosides
deoxyadenosine and deoxyguanosine to their monophosphate forms, albeit at a lower

rate [8]. In addition to these native substrates, the dCK enzyme is essential for



activating several nucleoside analog prodrugs via phosphorylation. These analogs
include anticancer drugs (cytarabine, gemcitabine, cladribine, and fludarabine) as well
as antiviral drugs (lamivudine and emtracitabine) [6].

Very little is known about non-human dCK homologs but they’re intriguing to
investigate because they could have distinct properties that might improve cancer and
antiviral therapies that rely on human dCK. There’s already evidence that novel human
dCK homologs improve the efficacy of gene-directed enzyme prodrug therapies for
cancer [9]. For example, a nucleoside kinase encoded by the fruit fly Drosophila
melanogaster has broader substrate specificity, better catalytic efficiency, and
improved stability [10] relative to its human counterpart. A truncated version of the fruit
fly dCK successfully re-sensitized a drug-resistant breast cancer cell line to treatment
with an anticancer nucleoside analog [10]. Another example is a tomato (Solanum
lycopersicum) thymidine kinase that is highly active and less sensitive to negative
feedback regulation by its reaction products [11]. Researchers used a combination of
an anti-cancer prodrug and the tomato thymidine kinase to successfully treat
malignant glioma (brain tumor) cells in vitro and brain tumors in mice [12].

Diving into the
ProteinCartography results for
the deoxycytidine kinase family

Running ProteinCartography on deoxycytidine
Kinases

To explore the biochemical function of non-human dCK homologs, we used the
ProteinCartography pipeline to find proteins that are structurally similar to the human
dCK protein and group them into clusters based on that similarity. ProteinCartography
uses BLAST and Foldseek to identify proteins similar to the input [13][14]. It compares
the structures of each protein to every other protein to produce TM-scores, or
structural similarity scores where a “one” indicates identical proteins [15]. Using these

scores, the pipeline performs Leiden clustering to separate similar proteins into



clusters and reduces dimensionality to create interactive UMAP and t-SNE projections
with overlays for further exploring the protein family [16][17][18].

In our analysis, we used “search mode” with standard parameters and with the human
dCK structure as input (UniProt ID: P27707). We requested 3,000 Foldseek hits and
7,000 BLAST hits — a total of 10,000 structures. Our run generated 2,418 unique
structure hits that grouped into 12 clusters (LCOO-LC11) (Figure 1). Our input protein,
human dCK, is in LCO4 (Figure 1 and Figure 2, A).
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Interactive protein space with metadata overlays for
proteins similar to human dCK.

UMAP generated by ProteinCartography for proteins
identified as similar to the human dCK. Our input protein
(human dCK) is in LCO4, indicated by a four-pointed star.
You can select different overlays via the drop-down “color”
menu.
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A full list of all the proteins in this analysis, plus all the aggregated information from the
pipeline can be found in the aggregated features file linked below:

Deoxycytidine_kinase_aggregated_features_pca_umap.tsv. Download

Assessing compactness and overall quality

We started our analysis by exploring the Leiden cluster similarity matrix (Figure 2, B) to
evaluate the quality of the protein space ProteinCartography generated. The similarity
matrix displays scores calculated by comparing the mean TM-score of every structure
in each cluster to every other structure in the analysis [1]. By looking at the similarity
scores along the diagonal of the matrix, we get an idea of how tightly grouped the
proteins are within each individual cluster. The average of the diagonal values is a
measure we've previously described as “cluster compactness” [1]. The clusters in our
analysis had a mean compactness score of 0.73 (average of the diagonal values in the
similarity matrix). Most of the individual clusters also appear compact (a score above
0.6), in particular LCO4 (score: 0.91; cluster with our input protein), LCO9 (score: 0.92),
and LC11 (score: 0.94) had some of the highest compactness scores (Figure 2, B).
Cluster compactness represents a basic quality-control check of how well the proteins
have grouped. However, given its nonlinear relationship with a number of other
ProteinCartography outputs, we decided to include several clusters with low
compactness in our downstream analyses to better understand the utility of cluster
compactness.

As a preliminary check of the quality of the structures, we explored the distribution of
mean pLDDT scores (structural confidence) and TM-scores (structural similarity)
across all clusters. The pLDDT scores tell us how confident the AlphaFold structural
prediction is and often low scores point to disordered regions. A score of 100 is a
highly confident structure [5]. The majority of the structures in our dCK analysis had a
pLDDT score greater than 80, except for the structures in LCO2, which we discuss
further below (Figure 2, A). These high scores suggest that we can be confident in the
accuracy of the structural predictions. When we looked at TM-scores, which tell us how
similar two structures are to each other, we saw that some structures are very similar
to the input protein (TM-scores close to one), but some structures are only distantly
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related (TM-scores
between 0.4 and 0.5)
(Eigure 1 and Figure
2, A). The broad
spectrum of

relatedness
represented enables
us to more
thoroughly
investigate the
relationship between
structural similarity
and function.
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Figure 2

ProteinCartography outputs reveal interesting
clusters of proteins with structural similarity to
human dCK.

(A) The structure of human dCK, where orange
indicates regions of higher disorder, alongside the
UMAP projection with Leiden cluster overlay. Black
diamond indicates the input protein. Note that LCO1 is
cropped out. Below the projection are violin plots
showing the distribution of key values for each of our
clusters of interest where the circles indicate the
median value. White dots mean the median is below
the threshold for significance, while filled-in dots
denote significance in a Mann-Whitney U test. “Broad
taxon” indicates taxonomic groups represented in
each cluster. “Annotation” is the UniProt annotation
confidence score, (scale: 1-5). “pLDDT” is the
confidence in the AlphaFold structural prediction for
each structure (scale: 0-100). “Length” is the number
of amino acids in each protein. “TM-score” is the
similarity of each structure to that of human dCK
(scale: 0-1).

(B) Cross-cluster similarity matrix. Each box represents
the average TM-score (structural similarity) when
comparing all structures in one cluster to all structures
in another, where a higher score means the structures
are more similar. The input cluster is marked with an
asterisk (*) and our clusters of interest are marked with
dots (e).

(C) UMAP projection with custom overlay showing
existing gene annotations. We manually sorted
annotations into seven major groups based on the
nucleoside or nucleoside derivative they act on and
created a custom color overlay.



(D) UMAP projection with broad taxonomic groups
overlaid.

(E) UMAP projection with TM-scores (compared to the
input protein) overlaid. Higher TM-scores indicate
higher structural similarity to human dCK.

(A, C-E) Dashed boxes mark our clusters of interest.

Exploring the data

To better understand the composition of our clusters and guide our selection process,
we explored ProteinCartography’s metadata overlays (Figure 1 and Figure 2, A). The
metadata that we found particularly interesting for our analysis shows the distribution
of taxa (broad taxonomy overlay) (Figure 2, D), length of proteins (length overlay), TM-
scores (TM-score_v_input overlay) (Figure 2, E), pLDDT scores (pLDDT overlay), and
UniProt annotation scores (annotation overlay), across all of the proteins in each
Leiden cluster (Figure 1).

In the following subsections, we walk through the most interesting clusters.

SHOW ME THE DATA: Our full ProteinCartography analysis for the deoxycytidine
kinase family is in this Zenodo repository (DOI: 10.5281/zen0do0.11288250).

LCO04: How does our input protein cluster?

We began by analyzing the metadata overlays for LCO4, which contains our input
protein, to see whether the results seem reliable and match what we would expect for
the cluster containing the input protein. We started with the broad taxonomic group
overlay. ProteinCartography assigns proteins into taxonomic groups that allow for the
best readability, but the taxonomic depth is not uniform. Cluster LCO4 contains two
dominant taxonomic groups, mammals and other vertebrates. Because our input
protein is a human protein, this is reasonable. The mean length of proteins in LCO4 is
~270 amino acids, which is very close to our input protein (260 amino acids), and the
mean TM-score is 0.9, indicating that the proteins in this cluster adopt a fold that’s

highly similar to our input protein (Figure 1 and Figure 2, A). The mean pLDDT score for
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proteins in LCO4 is 87, which confirms that the quality of the structural predictions is

high and that the proteins are generally well-structured (Figure 1 and Figure 2, A). Last,
the most common annotation score in this cluster is two (132 proteins out of 233 total

in LCO4) followed by one (78 proteins) (Figure 1 and Figure 2, A), which both suggest

that existing UniProt protein annotations are of low confidence. We often observe
these two annotation scores as the most common because the majority of the
proteins in the UniProt database have not been biochemically characterized. Overall,
these results are fairly typical for a ProteinCartography run and there were no

surprises, so we're reasonably confident that the pipeline worked as we'd hoped.

LCO2: Plant homologs close in structure to human
dCK

By exploring the taxon distribution across the other clusters in our analysis, we found
that all proteins in LCO2 are in the clade Viridiplantae (Figure 1; Figure 2, A; and Figure

2, D). The proteins in this cluster have a mean length that is much higher (512 amino
acids) compared to our input protein (260 amino acids) (Figure 1 and Figure 2, A). Even

though the proteins in LCO2 have a slightly lower mean TM-score (0.8), they should still
adopt the same fold as our input protein [19] (Figure 1 and Figure 2, A). The extra length

of the proteins in this cluster may contribute to their lower TM-score and lower mean
pLDDT score of 67. We explored the structures of a few of the individual proteins and
noticed that they all have a core region with a high pLDDT score (90) that structurally
aligns well with our input protein. However, that core region is flanked by unstructured
portions on both the N- and C-termini, which may also contribute to the low pLDDT
score for the entire protein. Similar to LCO4, almost all proteins in this cluster have an
annotation score of one (317 proteins out of 321 total in LC0O2), indicating an overall
poor quality of the annotations in this cluster (Eigure 1 and Figure 2, A).

LCO8 and LC0O9: Taxonomically diverse homologs
that diverge in structure from human dCK

When we explored the broad taxonomy overlay for LCO8 and LC09, we found that
there are highly diverse taxa represented in LCO8, including Vertebrata, Bacteria,
Archaea, Viridiplantae, and Arthropoda, while LCO9 contains exclusively bacterial
proteins (Figure 1 and Figure 2, D). The proteins in LCO8 are on average longer

compared to our input protein (319 amino acids vs. 260 amino acids), and this cluster



also contains some very long proteins (> 1,000 amino acids) (Figure 1 and Figure 2, A).

The mean length of proteins in LCO9 is very uniform and most proteins are shorter
than our input protein (220 amino acids vs. 260 amino acids). Finally, both LCO8 and
LCO9 show low mean TM-scores of 0.5 and 0.4, respectively, suggesting that the
proteins in these clusters have adopted a fold that is more distantly related to our input
protein (Figure 1 and Figure 2, E). For both clusters, the structure quality is high, with

mean pLDDT scores of 83 and 93 for LCO8 and LCQ9, respectively, and the vast
majority of the proteins (74%) have an annotation score of one or two (Figure 1 and

Figure 2, A), so their annotations are lower confidence.

Overlaying annotation data

In addition to all of the overlays that the ProteinCartography pipeline outputs
automatically, we can also create custom overlays to display any metadata. We
manually noted which type of deoxynucleoside or deoxynucleoside derivative each
protein was annotated to act on in UniProt since we noticed that not all the proteins in
our maps are kinases that are annotated as proteins that act on deoxycytidine. We
overlaid this annotation data onto our Leiden cluster map (Figure 2, C).

We were curious to see if proteins annotated as acting on the same substrate would
cluster together, or if perhaps proteins with certain annotations would be distributed
across multiple clusters. In the case of LC04, the vast majority of the proteins were
annotated as dCK (deoxycytidine kinase), the same annotation as our input protein
(Figure 2, C). For LC0O2, the most prevalent annotation was the general annotation,
“deoxynucleoside kinase,” or dNK, which could mean these proteins act on several
nucleosides or that this broad annotation was used because the substrate specificity

was unknown (Figure 2, C). While LCO8 contained very mixed annotations, all of the
proteins in LCO9 were annotated as acting primarily on cytosine or cytosine derivatives
(Figure 2, C). In addition to overlaying the protein annotations across the Leiden cluster

map, we used ProteinCartography to generate a semantic analysis of the annotations
that provides a more granular view of their distribution throughout clusters (Figure 3).
For example, we can see that while the input cluster LCO4 is primarily annotated as
“deoxycytidine kinase,” LCO9 is primarily “cytidylate kinase” (Figure 3). Additionally, we
can get more detail about the mixed annotations in LCO8, and see that the primary

annotations are “dephospho-CoA kinase,
(Figure 3).

uridine kinase,” and “guanylate kinase”
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Summary

Aside from the cluster with our input protein, LCO4, we find LC0O2, LC0O8, and LC09
most interesting because they contain proteins from diverse taxa and close, as well as
distant, structural homologs of our input protein. We plan to use proteins from these
clusters to test whether the two foundational hypotheses underlying
ProteinCartography are accurate (that proteins with similar functions cluster together
and those with dissimilar functions cluster separately), but we want to hear your
thoughts!

What do you think?

Testing hypothesis 1: Do proteins within
clusters function similarly?

Here are our ideas about how we might test this.

1. We could characterize uncharacterized proteins from the cluster containing our
input protein to determine if they have the same function as the input protein (in
LCO4). Specifically, we plan to test the ability of proteins to phosphorylate

deoxynucleoside substrates using ATP.

2. We could refine the current annotations of proteins that are annotated too broadly.
In the cluster with our input protein, some proteins are annotated as the generic
“deoxynucleoside kinase.” We could make this more specific by testing how these

proteins interact with different substrates.

Do these seem like reasonable approaches to test this hypothesis?



Testing hypothesis 2: Do proteins in different
clusters have different functions?

Here are the clusters we're considering to test this question. Each seems distinct in a
different way, so we suspect that we’ll find functional differences between proteins
from these clusters and between these and our human input protein, which is in LCO4.

1. LCO2 contains exclusively plant proteins with an overall low quality of annotations.
The proteins in this cluster are also longer than our input protein and contain a
disordered region at each end. We could investigate whether there are functional
differences between our input protein and proteins in LCO2, which could be

caused by the disordered region.

2. The proteins in LCO8 span several distinct taxonomic clades and are only distantly

related structural homologs of our input protein.

3. LCQO9 contains exclusively bacterial proteins that adopt a different fold from our

input protein based on our structural comparisons.



How should we approach working with dCK
proteins in vitro?

Once we select individual clusters and proteins, we’ll bring them into the lab for
biochemical characterization. We plan to purify each protein we select and test its
ability to act on its possible substrates.

Are there tips/tricks/challenges to biochemical analysis of dCK?

Do you have ideas for functions of dCK that we might want to test other than or in
addition to its activity as a deoxynucleoside kinase?

Additional methods

We used ChatGPT to help critique, clarify, and streamline text that we wrote.

Next steps

Now that we've selected deoxycytidine kinases as a protein family to test, we hope
readers will provide feedback on the interesting clusters we identified and how to
choose individual proteins for further analysis. Once selected, we’ll bring these
proteins into the lab for functional assays. We're planning to purify our selected
proteins and run basic activity assays on each one.

While our biochemical efforts are in progress, we have a few additional computational
ideas to gain insights into what we can learn from ProteinCartography clustering. We
discuss these potential next steps below.



Align functional data in the literature with
ProteinCartography clustering

While we plan to directly compare the function of diverse proteins from each family in
our own hands, we might also be able to check our ProteinCartography clustering
against empirical functional data in the literature. Do proteins with similar functional
profiles cluster together? Do those known to work differently cluster apart?

This analysis should be doable, as several homologs of the human dCK enzyme have
biochemical data available, including proteins from chicken [20][21], frog [20][21][22],
worm [23], arabidopsis [24], fruit fly [10][25], mosquito [26], moth [22], amoeba [27],
and bacteria [28][29][301[31]1[32][33][34]. There's also a review that summarizes the
biochemical activity of enzymes from this family from multiple organisms [35].

Learn more about clusters and individual
proteins by studying specific, conserved
structural features

We're broadly interested in leveraging comparative structural biology to annotate
protein function. While ProteinCartography analyses rely on comparing the global
protein structure, there are many other structure-based characteristics that we might
consider in trying to predict function across protein families. Some of these features
include secondary structural elements (like a-helices or B-sheets), surface area,
hydrophobicity, electrostatics, topology, inter-protein contact networks, active sites,
and potentially predicted binding sites. We're interested in comparing these features
across proteins to provide more specific and accurate protein function predictions.

For example, if we start with the human dCK enzyme and determine the conservation
of its structural features across many structural homologs, we may be able to predict
with a higher accuracy which of these proteins have a similar function. We know that
the human dCK enzyme acts not only on deoxycytidine (dC), but also on
deoxyguanosine (dG) and deoxyadenosine (dA). Could we predict which other proteins

act on these three nucleosides? Might we predict which proteins act on just one?



Summary

We hope that by combining our fold-based structural clustering, more specific
information on structural features, and functional data from the literature, we can start

to develop a more complete and predictive framework to understand protein function.
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