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How confident should we
be in potential targets of
tick protease inhibitors
predicted by AlphaFold-
Multimer?

We want to predict the targets of tick effectors to identify new
therapeutic targets for skin diseases. We ran a case study using
AlphaFold-Multimer to predict the targets of tick protease inhibitors,
but we aren't sold on our method. What other approaches should we
consider?
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Purpose

Human parasites have evolved to be expert manipulators of our biology, and we're
interested in the potential for ectoparasites like ticks to point us to the high-leverage
therapeutic targets for dermatological disease. Computational protein-protein
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interaction prediction methods have the exciting potential to allow us to map the
targets of tick effectors at an unprecedented scale.

However, when we conducted a small case study mapping the targets of a family of
tick protease inhibitors, we weren’t sure how to interpret our results. While some of our
hits seemed logical (i.e., present in the skin and connected to itch and inflammation),
we also got many hits to non-physiologically relevant proteases, such as human
digestive enzymes. We're sharing this case study to get feedback from others who
have used similar tools or asked related questions.

« This pub is part of the project, “Ticks as treasure troves: Molecular discovery in new

organisms. Visit the project narrative for more background and context.

- Data, including protein sequences, annotations, structures, our full

ProteinCartography analysis, and our raw AF-Multimer results, are on Zenodo.

- Additional data, including phylogenetic profiling results, D-SCRIPT results, and AF-
Multimer summary results, plus all associated code, can be found in our GitHub

repo.

We’ve put this effort on ice! [

#TechnicalGap

We identified host proteases predicted to be targeted by tick protease inhibitors,
but some targets seem more biologically plausible than others. Since we don’t
have a method to evaluate our false-positive rate, we aren’t sure how confident
we should be in our results. Without understanding this, we can’t justify moving
the project forward.

Learn more about the Icebox and the different reasons we ice projects.
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What are we trying to do?

Ticks are professional manipulators of skin. When ticks take a blood meal, they inject
pharmacologically active molecules into host skin to precisely control complex host
processes such as coagulation, inflammation, wound healing, itch, and pain [1]. Ticks
also feed for days to weeks [2], requiring prolonged and stable control of these
processes. We think this is translationally useful, as many skin diseases are
characterized by chronic inflammation, itch, and pain. There's substantial unmet need
in chronic skin conditions, in part driven by the complexity of the underlying biology of
these processes [3]. We see this as a target selection problem: it’s not clear which
human proteins or pathways represent the most tractable point to manipulate
therapeutically to obtain a durable patient response.

We reasoned that ticks might be able to point us to the highest-leverage therapeutic
targets for controlling these processes. However, there are hundreds to thousands of
putative tick effectors and an even larger number of potential targets in the human
proteome. To this end, we have begun exploring computational approaches to predict
cross-species protein-protein interactions, with the dream of comprehensively
predicting the targets of tick salivary effectors across the human proteome. We
decided to start small, with a case study predicting the targets of a family of tick
protease inhibitors. It’s well known that protease inhibitors represent a large fraction of
tick salivary effectors [4], but most tick protease inhibitors haven't been matched to
their targets. Proteases are a large class of enzymes involved in many processes that
play evolutionarily significant roles in the feeding ecology of ticks (e.g., blood
coagulation [5], wound healing [6], inflammation and immunity [7], itch [8], pain [9],
etc). In this case study, we used protein-protein interaction (PPI) prediction to identify
the targets of a single family of protease inhibitors.

We first selected a family of tick trypsin-inhibitor-like (TIL) protease inhibitors to use in
our case study. Then, we tested out PPI prediction tools D-SCRIPT [10] and AlphaFold-
Multimer (AF-Multimer) [11] to identify targets of these inhibitors. Last, we tried to
contextualize our results to evaluate whether these tools gave us actionable insights.
This is where we got stuck: while we can predict targets, we have no idea how reliable
we should consider these hits. We're sharing this case study to solicit opinions and
feedback from others who have worked on similar problems.



Our approach so far

As our goal was to identify the targets of a single, promising protease inhibitor gene
family, we first identified protease inhibitor genes and then connected them to tick
gene families that we'd previously identified [12]. We then used phylogenomic trait
association tests [12] to rank protease inhibitor families according to the strength of
their association with host detection suppression by the parasites. Using the most
strongly positively associated protease inhibitor family, we tried out protein-protein
interaction prediction tools D-SCRIPT and AF-Multimer to predict the human
proteases targeted by a single family of tick protease inhibitors.

Keep reading for more details or skip straight to “The results.”

Identifying putative tick protease inhibitors and
secreted proteins of unknown function (PUFs)
with HMMs

The first step in our analyses was to identify putative tick protease inhibitors in ticks
using HMM annotations. We used 15 tick proteomes that we'd downloaded and
annotated with DeepSig (v1.2.5) [13], KofamScan (v1.3.0) [14], and eggNOG-mapper
(v2.1.10) [15] as part of a larger effort to explore the genetic basis of host detection
suppression in ticks and other chelicerates [12]. We used these annotations to select
proteins with annotations that relate to protease inhibitor function. Because some
host-interacting protease inhibitors may have been too divergent to receive an
annotation from eggNOG-mapper or KofamScan, we also chose to move all secreted
proteins of unknown function (PUFs) forward to structural analysis. We considered a
protein to be of unknown function if it didn't have any eggNOG-mapper annotation and
if it didn't have a KofamScan hit above the KofamScan-recommended threshold. We
categorized proteins as secreted if they had the DeepSig feature “Signal peptide.” We
then removed all proteins > 1,200 amino acids, due to the challenges associated with
folding larger proteins.

Check out "Notebook 01" in our GitHub repo for our protein selection code.


https://github.com/Arcadia-Science/2025-pi-disco-pub/blob/main/notebooks/01_get_proteins.ipynb

Structural prediction with ESMFold

At the time of this analysis, the majority of our tick-secreted PUFs and protease
inhibitors had no predicted structures. So, we used ESMFold [16] to predict the
structures for these proteins to use in downstream structural comparisons. To do this,
we used a pre-trained EsmForProteinFolding model from the Hugging Face
transformers package (v4.45.0) to predict protein structures with our Arcadia Science-
hosted ESMFold API. We used the pre-trained model “facebook/esmfold_v1,” and we
replaced ambiguous residues (marked as “X” in the sequence) with alanine prior to
folding. Ambiguous residues arise from errors in sequencing, where bases are left as
“N,” and translated as X in the amino acid sequence. We chose to replace these
unknown amino acids with alanine, a chemically neutral amino acid, to enable folding
by ESMFold. The “engque.py” script cleans the sequences and submits the job,
whereas the “download_pdbs.py” script fetches the folded results from the ESMFold

API. We didn't perform any additional refinement on the predicted structures.

Access our predicted structures in “pi-disco_esmfold_structures.zip” on
Zenodo (10.5281/zenodo.15186244).

Downloading UniProt toxin database

To identify novel or divergent protease inhibitor families in ticks, we compared our
predicted tick protein structures to the UniProt animal toxin annotation project

database of 7,065 manually reviewed toxins. Many of these toxins are protease
inhibitors from other venomous species. We downloaded the AlphaFold-generated

PDB files of venom toxin proteins from UniProt using “fetch_accession.py” from

ProteinCartography [17] and downloaded the metadata file using

“fetch_uniprot_metadata.py.” We were successful in downloading 7,008 structures.

View the metadata file and list of downloaded structures.
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Using ProteinCartography to identify tick
protease inhibitors

The next step in our protease inhibitor discovery workflow was to use structural
clustering to identify major structural families of protease inhibitors in ticks. We
clustered our tick protease inhibitors and secreted proteins of unknown function with a
UniProt structural database of venom toxins using ProteinCartography (v0.4.0-alpha)

[17] in cluster mode using default parameters. This produces Leiden clusters of
structurally related proteins. Many of these structural clusters don’t contain protease
inhibitors, so we used ProteinCartography semantic analysis of protein annotations to
identify high- and low-confidence clusters of protease inhibitors. High-confidence
clusters are structural clusters with within-cluster TM-scores > 0.2 [18] and
annotations clearly related to protease inhibitor function. Low-confidence clusters fail
to satisfy one of these requirements, but have some protease inhibitor-related
annotations and therefore contain potential genes of interest. We retained all low-
confidence cluster members with the caveat that many of them may not be true

protease inhibitors.

We then used our NovelTree [19] analysis of chelicerate gene families [12] to identify
orthogroups of secreted proteins putatively involved in protease inhibition within these
structural clusters. For orthogroups with high-quality protease inhibitor annotations,
we retained orthogroups with more than five members with DeepSig secretion signals,
and for which secreted proteins comprised more than 5% of the orthogroup. For
orthogroups with low-quality protease inhibitor annotations, we were more stringent
and required that = 25% of the orthogroup had DeepSig secretion signals, and that
this represented more than 25 total proteins. We also required that = 50% of
orthogroup members were annotated as protease inhibitors or secreted PUFs. We
moved forward with the 36 orthogroups that fit these requirements (14 high-quality, 22
low-quality).

Check out "Notebook 02" for code to prepare metadata files, “Notebook 03"
for ProteinCartography analysis code, and the ProteinCartography config file

in our GitHub repo.
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Phylogenetic profiling of tick orthogroups

Note

The methods described below represent a legacy approach that we used as we
were completing the development of our phylogenetic profiling pipeline. The
proteome-wide analysis and approach found in [12] represents a distinct, and
more mature implementation of these concepts. This smaller-scale analysis here
served only to let us quickly rank gene families in this case study.

In parallel work [12], we calculated gene copy number and curated species-level,
parasitism-related trait data across 40 chelicerates that vary in their ability to suppress
host detection. In this work, we used that data to help identify which of our 36
orthogroups of interest most strongly predict the host detection suppression trait.
First, we normalized the distributions of species gene copy number by logio-
transforming them [log;,(x + 1), adding one to avoid undefined values for log;,(0)1.
To account for the statistical non-independence of species and their phenotypes as
induced by their shared evolutionary history [20], we applied a phylogenetic
generalized least-squares transformation [21] to both the species trait and gene copy
number data using the species tree inferred from SpeciesRax [22] (applied to data
withinthe fit_lasso_counts function defined in “trait_mapping_functions.R”). This

transformation effectively “regresses out” the effect of evolutionary non-
independence on trait variation, returning the “residual” trait variation not explained by
common ancestry alone.

Using these transformed data, we subsequently conducted Lasso regression (i.e., L1
regularization) to predict whether species suppress host detection using gene copy
number, implemented using the R package “familiar” [23] in a custom function
( fit_lasso_counts ). Specifically, we predicted detection suppression as a binomial
outcome, using 10-fold cross-validation with feature selection using the
lasso_binomial method, clustering features prior to feature selection using the
hclust method. Using this analysis, we selected OGO000058, as it had the highest
model variable importance for which the partial dependence plots also demonstrated
a positive relationship between copy number and probability of supressing host

detection.


https://github.com/Arcadia-Science/2025-pi-disco-pub/blob/main/scripts/trait_mapping_functions.R

Check out our phylogenetic profiling_code.

Selecting tick candidates for protein-protein
interaction (PPI) prediction

Our next step was to take members of our top-scoring protease inhibitor orthogroup
OGO0000058 and use protein-protein interaction prediction tools to predict their
targets in the human proteome. For this case study, we chose to follow up on 10
members OGO000058 encoded by the lone star tick Amblyomma americanum. A.
americanum has 32 genes in this gene family, so we filtered down to choose the ones
most likely to interact with the host. We picked 10 genes with secretion signals and the
highest expression level in the female tick salivary gland, according to our differential
expression analysis of A. americanum [24]. For analyses where we only used a single
protease inhibitor, we used Amblyomma-americanum_evm.model.contig-94090-1.4
as a representative, since it had one of the highest-quality structures of the group
(oLDDT = 83.8).

For more details on how we selected candidate protease inhibitors, see
“Notebook 05" in our GitHub repo.

Selecting human targets for protein-protein
interaction (PPI) prediction

0OGO0000058 is a family of trypsin-inhibitor-like (TIL) domain serine protease inhibitors,
so we decided to test for interactions against serine proteases. To select our targets,
we accessed protein sequences and structures for proteins with annotations related
to “serine protease” from the UniProt human reference proteome (accession
UPO00005640). We then filtered out all proteins > 700 amino acids in length. We
chose this cutoff because D-SCRIPT can't reliably predict interactions for protein

complexes longer than a combined length of 1,000 amino acids (AAs), and in our initial
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tests of AF-Multimer, performance dropped off for protein complexes longer than
~700 AAs.

Running AF-Multimer

AF-Multimer [11] takes in combined FASTA files of bait and target proteins to fold into a
complex. To prepare the combined FASTA files separated by a semicolon for AF-
Multimer predictions, we created two scripts using Biopython (v1.81) [25]: “make-
afmultimer-fasta-from-segs.py” to make combinations from two FASTA files and

“make-afmultimer-from-tsv.py” to make combinations from a TSV list. We used
ColabFold (v1.5.2) [26] to launch the AlphaFold2-Batch notebook [27] on Google Colab
to make AF-Multimer complex predictions [11]. For all runs, we set the msa_mode

parameter to use MMseqs2 [28] using the UniRef + Environmental database [26], the
num_models parameter to five models per prediction, and the num_zecycles

parameter to three.

Access AF-Multimer inputs and raw outputs on Zenodo.

AF-Multimer analysis and metrics

To analyze the AF-Multimer predictions, we used the LazyAF analysis notebook [29] to

take the highest-ranked prediction and calculate the predicted template modeling
(pTM) score, the interface predicted template modeling (ipTM) score, and the ranking
confidence score. The ranking confidence score equals 0.2 x pTM + 0.8 x ipTM,
and a high-confidence score is at or above 0.75. We also modified the existing LazyAF
notebook to add a calculation for the average pLDDT of the predicted complex
structure, which is available here. To calculate additional protein complex metrics,
such as the predicted DockQ (pDockQ) of the interacting residues at the binding
interface, we used the “AF2multimer-analysis” script from the predictomes.org toolkit

[30]. We considered a high-confidence interaction score based on pDockQ to be at or
above a threshold of 0.5 [31][32].
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See “Notebook 06” in our GitHub repo for processing AF-Multimer raw

results.

Additional metrics, such as each predicted complex’s pLDDT and predicted

alignment error (PAE), are in the “2024-04-24-final-serine-protease-filtered-

interface-comps-results.tsv” file on GitHub.

Running D-SCRIPT

We ran D-SCRIPT (v0.2.6) using the topsy-turvy model of human-human PPIs, as
recommended in the documentation [10]. We automated the steps for configuring
inputs and running predictions for D-SCRIPT with the script
“make_dscript_PPI_predictions.py.” A high-confidence PPl interaction score with D-
SCRIPT is at or above 0.5.

See “Notebook O7” in our GitHub repo for comparison of D-SCRIPT and AF-

Multimer results.

Protease cell and tissue type expression
analysis

Finally, we wanted to determine which tissues and cell types in which the predicted
targets of tick protease inhibitors are expressed. We obtained the predicted
expression of each human serine protease hit from the NCBI Gene Database using an
RNA-seq study of 95 humans from 27 tissues [33]. We determined a protease to be
expressed in the skin if it was labeled as being expressed in “skin” and assigned
proteases to be putatively expressed in immune cells if they were highly expressed in
lymphoid tissues such as bone marrow and spleen. We also labeled chymase
(P23946) and tryptase (Q15661) as being produced by immune cells since they
originate from mast cells (tissue-resident granulated immune cells). We then followed

up on our predicted skin and immune cell-expressed proteases using the Human
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Protein Atlas to identify specific cell types responsible for producing the protease. We
performed data analysis, parsing, and plotting in R (v4.3.3) using tidyverse (v2.0.0) [34]
and patchwork (v1.2.0) [35] packages.

View expression data for the 35 proteases of interest and see “Notebook 08” for

our analysis.

Additional methods

We used ChatGPT to help write and clean up code. We also provided ChatGPT with
starting text to reorganize into one of our pub templates. ChatGPT and Grammarly
Premium also suggested wording ideas, and then we chose which small phrases or
sentence structure ideas to use.

We used arcadia-pycolor (v0.5.1) [36] and arcadiathemeR (v0.1.1) [37] to generate
figures before manual adjustment.

All code we generated and used for the pub is available in this GitHub repository
(DOI: 10.5281/zen0d0.15243681), which includes code for ProteinCartography
results analysis, phylogenetic profiling, generating PPI prediction FASTA file

inputs, D-SCRIPT runs, and AF-Multimer analyses.

The results

SHOW ME THE DATA

Protein sequences, annotations, and structures are on Zenodo. We've also

uploaded our full ProteinCartography analysis and our raw AF-Multimer results.

Phylogenetic profiling results, D-SCRIPT results, and AF-Multimer summary

results can be found in our GitHub repo.
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We're interested in scalably predicting the targets of tick salivary effectors. As a case
study, we decided to test new methodology to do this for tick protease inhibitors.
Protease inhibitors are abundant in tick saliva, and other groups have successfully
used PPI prediction tools to identify the host protease targets of parasite protease
inhibitors [38].

Structural clustering identifies 36 gene families
of putative protease inhibitors

The first step in this case study was to identify protease inhibitor families that ticks may
use to interact with their hosts. To do this, we used sequence-based annotations of 15
tick proteomes to select all proteins predicted to be involved in protease inhibition.
This comprised 3,453 putative protease inhibitors. Because many tick proteins don't
receive high-confidence functional annotations and structural comparisons are more
robust to sequence divergence than sequence-based annotation methods, we
decided to use structure-based methods to identify unannotated protease inhibitors.
To this end, we used our in-house tool ProteinCartography [17] to define major
structural clusters of known protease inhibitors and secreted proteins of unknown
function (PUFs). We clustered 3,453 annotated tick protease inhibitors and 12,041
secreted PUFs with a database of 7,008 venom toxins, which includes diverse
protease inhibitors from different venomous species. This produced 32 Leiden
clusters. By looking through the ProteinCartography cluster TM-scores (a measure of
intra-cluster structural similarity) and ProteinCartography cluster semantic analysis
(aggregated functional annotations), we identified seven high-confidence protease
inhibitor Leiden clusters (LCO6, LC13, LC14, LC15, LC20, LC22, LC29) and four low-
confidence protease inhibitor Leiden clusters (LC02, LCOS5, LC17, LC21) (Figure 1).
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Semantic analysis of A) seven high-confidence protease inhibitor clusters

and B) four low-confidence structural clusters.

High confidence clusters (LCO6, LC13, LC14, LC15, LC20, LC22, LC29) have a

within-cluster TM-score > 0.2, and annotations related to protease inhibition. We
have labeled the seven high-confidence clusters with their consensus domain
annotations at the top of their plot. Low confidence clusters (LC0O2, LCO5, LC21)
with low within-cluster TM-score are labeled at the top of their plot. We consider
LC17 to be a low-confidence cluster despite having a within-cluster TM-score >

0.2 because it has inconclusive annotations.



For our downstream analyses, we needed to work with individual gene families, not
large clusters of proteins. As we'd defined tick gene families using NovelTree [19] in a
parallel effort [12], we were able to identify the tick gene families that were present in
our protease inhibitor structural clusters. Overall, this gave us a total of 36 gene
families of putative protease inhibitors, 14 coming from high-confidence structural
clusters and 22 coming from low-confidence clusters. We chose to retain gene
families originating from low-confidence clusters in an effort to be comprehensive,
with the caveat that this choice could introduce gene families that didn't have protease

inhibitor function into our downstream analyses.

You can find the full ProteinCartography results in
“tick_PUFs_Pls_1200_plus_toxinDB_carto_run3.zip” on Zenodo.

OG0000058 is a family of TIL-domain protease
inhibitors predicted to suppress host detection

Next, we had to prioritize a single family of protease inhibitors to test in our target-
prediction framework. While we were doing this target-prediction pilot, we were also
kicking off a larger effort to use phylogenetic profiling of ticks and their relatives
(collectively called chelicerates) to identify the genetic basis by which ticks and other
parasites block host detection mechanisms like itch, pain, and inflammation [12]. From
this larger effort, we'd inferred the evolutionary histories (patterns of duplication,
transfer, and loss) for all tick gene families, including our 36 gene families of interest.
We used our evolutionary data to rank our protease inhibitor families based on how
likely they are to be associated with suppressing host detection. We reasoned that
protease inhibitors linked to suppressing host detection would be more likely to target
host proteases than endogenous tick proteases.

We found that the top three gene families with the highest model variable importance
(most likely to suppress host detection based on our phylogenetic analysis) were
0G0001324, 0OGO000480, and OGO0O00058 (Figure 2, A). When we looked at the
annotation for each group, we found that 0G0001324 derived from a low-confidence

structural cluster and doesn’t actually contain protease inhibitors. Further analysis
showed that they're a family of secreted proteins with some similarity to IL-17-like
cytokines. While these putative IL-17-like proteins are very interesting to us (and we’ll


https://zenodo.org/records/15186244

release a pub on them soon!), we still wanted to try our target prediction pipeline with

protease inhibitors, so we turned to the second- and third-ranked hits. OG0000480 is

annotated as alpha-2 macroglobulin-like protease inhibitors, and OGO000058 is

annotated as a family of trypsin-inhibitor-like (TIL) domain protease inhibitors.

0OG0000480 is negatively associated with the detection-suppression trait, whereas

0OGO000058 is positively associated with host detection suppression (Figure 2, B). So,

we chose to use OGO000058 as our candidate family of host-directed protease

inhibitors. TIL domain protease inhibitors are predicted to inhibit serine proteases [39],

but their role in tick biology is relatively unknown.

Our phylogenetic profiling results are available on GitHub.
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Phylogenetic profiling of putative tick protease inhibitor orthogroups.

(A) Model variable importance (Borda scores aggregated across cross-validation

replicates) of different tick orthogroups in predicting the detection-suppression

trait.

(B) Partial dependence plots for the top orthogroups OG0001324, OGO000480,
and OG0O000058 in the validation phase of model construction, depicting how,

in the fitted model, the probability of host detection suppression increases or

decreases along with increasing copy number.


https://github.com/Arcadia-Science/2025-pi-disco-pub/tree/main/outputs/detection_suppression_outputs/trait_prediction/detection_suppression_test_lasso/s_counts_proteases_combined

AF-Multimer predicts 34 targets for a single
representative of 0OGO000058

We decided to test the ability of two different tools to predict tick-human protein-
protein interactions (PPIs): D-SCRIPT [10] and AF-Multimer [11]. D-SCRIPT is a deep
learning tool for predicting PPls based on sequence inputs, and AF-Multimer is a
structure-based approach that predicts PPIs by folding multiple proteins together in a
complex, which can then be scored and ranked. D-SCRIPT is much cheaper and faster
to run, but AF-Multimer has been demonstrated to perform well in predicting cross-
species PPIs, specifically for protease inhibitors [38]. We began by screening a single
representative of OGO000058 from the lone star tick Amblyomma americanum
(Amblyomma-americanum_evm.model.contig-94090-1.4) against 527 human serine
proteases using D-SCRIPT and AF-Multimer to directly compare and evaluate their
performance (Figure 3). While we got high-confidence hits from both tools, there was
little overlap between them. We suspect the discordance between D-SCRIPT and AF-
Multimer is because the PPl model underlying D-SCRIPT is built based on human-
human PPI predictions and doesn’t generalize well to cross-species PPl interactions.
Given this, we decided to move forward with just the hits from AF-Multimer. This
analysis identified 34 reviewed UniProt accessions with an AF-Multimer ranking
confidence score above 0.75 (see the full results, including unreviewed accessions
here).

Question

What other tools should we try?


https://github.com/Arcadia-Science/2025-pi-disco-pub/blob/main/outputs/protein_protein_interaction_results/Amblyomma-americanum-94090-1.4-serine-protease-initial-afmultimer-screen.csv
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Comparisons of PPI predictions between sequence- (D-SCRIPT) and
structure-based (AF-Multimer) tools.

Plot shows tick-human PPI predictions for protease inhibitor 94090-1.4 against
527 human serine proteases. Confident hits from D-SCRIPT are at or above 0.5
and confident hits from AF-Multimer are at or above 0.75, indicated with dashed
lines. Filled-in points are reviewed UniProt accessions, whereas crossed-through
points are unreviewed UniProt accessions, which are primarily isoforms of the
reviewed accessions. Blue points indicate that the prediction is a high-
confidence AF-Multimer hit — these are the potential targets against which we

decided to test our nine remaining tick protease inhibitors.



Predicted targeted proteases are commonly
expressed in the skin,immune cells, or the
pancreas

To understand the physiological relevance of these potential targets, we looked at
tissue expression data for each human protease (see all our hits with tissue expression
data here). Excitingly, 14 of these proteases are primarily expressed in immune cells or
the skin, and would be plausible targets of tick protease inhibitors. Ticks interact
intimately with human skin and would need to counteract any host proteases produced
by skin cells or local immune cells that are involved in inflammation, itch, pain, or other
modes of host defense. Furthermore, of these skin- or immune-cell-expressed
proteases, several are implicated in various dermatological pathologies characterized
by itch, pain, and inflammation (Table 1), highlighting the importance of regulating the

activity levels of these enzymes. However, it’s clear that not all of the hits are relevant
to tick biology. For example, 12 highly scoring hits were to pancreas-produced
proteases, which the tick is unlikely to encounter. It's possible that these 34 hits are all
genuine potential interactors for the tick protease inhibitor (irrespective of whether the
tick would actually encounter them in skin). It’s also possible that this large number of
physiologically implausible hits reflects a high false-positive rate.

Question

What do you think? Does a single protease inhibitor really interact with all these
different proteases, or does this reflect a high false-positive rate?


https://github.com/Arcadia-Science/2025-pi-disco-pub/blob/main/outputs/protein_protein_interaction_results/2024-04-24-final-serine-protease-filtered-interface-comps-results.tsv

A tati UniProt | UniProt s Associated
nnotation name ID ource skin diseases
Azurocidin CAP7 pooteo | Immune cells
(neutrophils)
Atopic dermatitis
[40], generalized
. Immune cells pustular
Cathepsin G CATG P83 (neutrophils, B cells) psoriasis [41]
[42], psoriasis
[43][44][45]
Atopic dermatitis
Chymase CMA1 p23g4p | IMmmune cells [46][47][48][49]
(mast cells)
[50]
Atopic dermatitis
[51], psoriasis,
Immune cells various
Granzyme B GRAB P10144 (NK cells, cytotoxic T | autoimmune
cells) skin diseases
[52][53]
[54][55]
Immune cells
Granzyme H GRAH P20718 (NK cells, cytotoxic T
cells)
Immune cells
Granzyme M GRAM P51124 (NK cells, cytotoxic T
cells)
Immune cells
Myeloblastin | PRTN3 | P24158 | (Polymorphonuclear
leukocytes,
neutrophils)
Bullous
pemphigoid
Neutrophil Immune cells [56], atopic
elastase ELNE P08246 (neutrophils) dermatitis [57],
psoriasis [44]
[45]
Serine PRS33 QSNF86 Immune cells
protease 33 (macrophages)
Atopic dermatitis
Tryptase TRYBI Q15661 Immune cells (mast [58],

alpha/beta-1

cells)

mastocytosis
[59]




Netherton’s
syndrome,
atopic dermatitis
[60][61][62][63]

Kallikrein-7 KLK7 P49862 Skin (keratinocytes)

Various skin
Kallikrein-8 KLK8 060259 Skin (keratinocytes) diseases [64]
[65]

Kallikrein-9 KLK9 Q9UKQ9 | Skin (keratinocytes)

Netherton’s
syndrome [66],
various skin
diseases [65]

Kallikrein-14 KLK14 Q9POG3 | Skin

Table 1

Immune- and skin-expressed serine proteases predicted to be targeted
by the tick protease inhibitor Amblyomma-
americanum_evm.model.contig-94090-1.4.

These human serine proteases are predominantly expressed in skin or immune
cells according to the Human Protein Atlas, and we predict that they’re inhibited
by protease inhibitor Amblyomma-americanum_evm.model.contig-94090-1.4.
Where possible, we also indicate the cell type that the Human Protein Atlas
predicts will produce the protease. Many of these proteases are associated with

skin diseases.

Incorporating pDockQ score didn't substantially
change our results

In an attempt to separate any potential false positives from the true positives, we
rescored our hits using predicted DockQ (pDockQ) score. While the AF-Multimer
ranking confidence score is a combined metric of the interface score (ipTM) and an
overall structural score of the complex (pTM), pDockQ score is the average quality of
interacting residues of the complex [31][32]. We hoped this additional metric would
give us more information on which hits to consider high-confidence. However, only four
of the 34 hits fell below the pDockQ confidence threshold of 0.5. Notably, three out of
the four hits that were excluded by the pDockQ score were produced by immune cells



and were hits we'd initially considered to be plausible targets of tick protease inhibitors
(myeloblastin: pDockQ score of 0.464, granzyme B: pDockQ score of 0.467, tryptase
alpha/beta-1: pDockQ score of 0.469). Our file with full results, including pDockQ and

AF-Multimer scores, is available here.

Question

Are there other metrics or cutoffs that we should look at that could help give
confidence in our hits, and eliminate false positives?

Next, we compared the scores of each protease with pDockQ and AF-Multimer
confidence. Initially, we thought higher-probability hits might consistently receive high
scores from both metrics, and low-probability hits would be noisier. However, both
scoring systems gave different top-ranked hits, and there wasn’t an obvious way for us
to use the scores in conjunction (Figure 4). pDockQ gave more biologically plausible
top hits (neutrophil elastase, complement factor D, and mast cell chymase, all related
to the innate immune response) compared to the AF-Multimer confidence score
(pancreatic chymotrypsins, related to digestion). However, the fourth-ranked hit for
pDockQ is another pancreatic chymotrypsin.


https://github.com/Arcadia-Science/2025-pi-disco-pub/blob/main/outputs/protein_protein_interaction_results/2024-04-24-final-serine-protease-filtered-interface-comps-results.tsv
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americanum_evm.model.contig-
94090-1.4, clustered by
Euclidean distance. We have
scaled these scores to make the
relative rankings of each hit
comparable between the two
scoring systems. Darker shades
correspond to higher ranking.
We've color-coded proteases
produced by skin cells, immune
cells, or the pancreas.

Other members of OGO000058 are predicted
to have similar target profiles

As another approach to enrich for biologically plausible hits, we decided to predict
targets for other members of the OGO000058 family. This gene family is highly
expanded in ticks, with 32 distinct copies in A. americanum alone. We selected nine
other secreted, salivary-gland-expressed members of this family from A. americanum
to predict protein-protein interactions. Ideally, we'd perform the same initial search
against all human serine proteases for nine other representatives, and compare if they
have the same or different targets. However, this wasn't feasible because of time and
computational resource limitations, so we instead used the 34 positive hits from the
initial screen to make predictions for the remaining nine protease inhibitors. We
weren'’t sure if we should expect them all to have similar target profiles, or if their
expansion in ticks reflects a diversification of targets. Regardless, we reasoned that
any false positives from our initial search with one member might consistently score

poorly when tested against more family members.

In doing this, we found that in most cases, the other members of the OGO000058
family also had high-confidence interactions predicted for the 34 proteases from the
initial search (Figure 5). We scored these interactions with pDockQ (Figure 5, A) and
AF-Multimer confidence (Figure 5, B), but both scoring systems overall produced

similar results. Using either metric, the majority of the interactions were predicted to
be high confidence (> 0.75 for AF-Multimer confidence and > 0.5 for pDockQ). The
clearest signal we saw from this analysis was that the protease inhibitor Amblyomma-

americanum_evm.model.contig-8661-1.1 had below-threshold scores for every



predicted interaction. When we looked into it further, we found that this protein had a
very low-quality structure (pLDDT = 36.9 out of 100), so we attribute these disparate
results to this low structural quality. Our file with results for all 10 protease inhibitors is

available here.


https://github.com/Arcadia-Science/2025-pi-disco-pub/blob/main/outputs/protein_protein_interaction_results/2024-04-24-final-serine-protease-filtered-interface-comps-results.tsv
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Question

Do these family members really all target similar proteases? Or is this a sign that
our approach isn’t giving us sufficient resolution?

Conclusion

We were able to use AF-Multimer to predict targets of a family of TIL-domain tick
protease inhibitors, but we have no idea how much confidence we should have in
these hits. Some of these targets seem reasonable (i.e., produced by skin or immune
cells), but we found an almost equal number of physiologically irrelevant targets (i.e.,
pancreatic enzymes). These could represent real potential interactors, as there's
precedent for tick protease inhibitors to have the capacity to inhibit proteases not
found in the skin. For example, serpin Rms-3 from the tick Rhipicephalus microplus
can inhibit pancreatic enzymes chymotrypsin and elastase [67]. However, it's also
possible that many of our computational hits are false positives, and in reality, these
TIL-domain protease inhibitors are active against a much smaller range of targets.
Without knowing how to distinguish between these two possibilities, it's hard to justify
moving the project forward.

What’s next?

We think there’s a lot of promise in predicting the targets of tick effector proteins, and
are still excited about what this approach can teach us about useful ways to
manipulate skin biology. We aren’t sold on this particular method though, given that we
don’t have a great way to evaluate our true vs. false positive rates.

Right now, we think the right thing to do would be to benchmark our computational
search against actual experimental data. However, we don’t know of any datasets that
would be right to use as the “ground truth” for benchmarking our pipeline. While some
targets of some tick protease inhibitors have been identified, we don’t know of any
studies that have comprehensively evaluated the activity of a single tick protease
against all human proteases (the experimental equivalent of our computational

search).



Overall, we're still interested in exploring alternative or additional approaches to solve
this problem, but we’ve gotten stuck. We're sharing this case study in case others in
the community have opinions or feedback on what we should try next.
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