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How can we biochemically
validate protein function
predictions with the Ras
GTPase family?

We're using the well-studied superfamily of small monomeric
GTPases, the Ras GTPases, to evaluate our structure-based
clustering tool, ProteinCartography. We're seeking feedback on
working with this protein family and determining which individual
proteins to study.
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Purpose

ProteinCartography is a tool for computational comparison of protein structures
across species [1]. It uses the sequence and structure of an input protein to identify
similar proteins. It then produces clusters of structurally similar proteins, displayed in
an interactive map. We've outlined a rough plan to biochemically validate the two

foundational hypotheses underlying the pipeline [2].
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The first step of this plan was to select protein families for analysis. We selected the
Ras GTPase superfamily because it's previously been biochemically analyzed and
because it presented many opportunities to test our foundational hypotheses [2].

Here, we present our ProteinCartography results for the Ras GTPases.

We'd like feedback on how we should select individual clusters and proteins and how
we might test the function of this protein across species in vitro. We'd particularly love
to hear from those who've studied Ras GTPases.

- This pub is part of the platform effort, “Functional annotation: mapping_the

functional landscape of proteins across biology.” Visit the platform narrative for more

background and context.

« This pub is part of our validation strategy series of pubs that starts with “A strategy

to validate protein function predictions in vitro.” We're also considering

deoxycytidine kinases as an orthogonal protein family for validation. To learn more

about them, visit the accompanying_pub [3].

- The ProteinCartography pipeline used to run these analyses is available in this
GitHub repo. To create the custom overlays, we used this notebook and added our
custom color dictionaries, which can be found in the associated Zenodo

repositories.

« The data associated with this pub, including the full ProteinCartography analysis for

the Ras GTPase family, can be found in this Zenodo repository.

Background

Why use RasGTPases?

For our first round of validation, we want to focus on protein families that will help us

test our foundational hypotheses in a straightforward way. We started our search for

candidate protein families by looking at the 200 most-studied human proteins in the
Protein Data Bank, as these have likely been purified and biochemically studied


https://research.arcadiascience.com/annotation
https://research.arcadiascience.com/annotation
https://research.arcadiascience.com/pub/idea-how-to-validate-proteincartography/
https://research.arcadiascience.com/pub/idea-how-to-validate-proteincartography/
https://research.arcadiascience.com/pub/idea-how-to-validate-proteincartography/
https://research.arcadiascience.com/pub/open-question-dck-proteincartography/
https://github.com/Arcadia-Science/ProteinCartography/releases/tag/v0.5.0
https://github.com/Arcadia-Science/ProteinCartography/releases/tag/v0.5.0
https://github.com/Arcadia-Science/2023-actin-embedding/blob/main/notebooks/3_plotting_overlays.ipynb
https://zenodo.org/records/11288430

previously [4]. We first narrowed down this list by looking for proteins under 1,280
amino acids, as this is the cutoff that AlphaFold uses (as listed in the FAQ at the time of
writing), and ProteinCartography uses structures from the AlphaFold database [5][6].
Each AlphaFold structure has per-residue confidence scores in the form of pLDDT
scores, which approximate the amount of disorder in a protein’s structure [7]. We
chose to focus only on proteins with a mean pLDDT score over 80, which implies that
the proteins are generally modeled well. Given that the ProteinCartography pipeline
relies on AlphaFold for structural comparison, these cutoffs increased the chances
that our structural predictions would be high-confidence. We next narrowed down the
list by looking for proteins with commercially available assay kits.

We found that the Ras GTPases, namely HRas and KRas, not only fit these criteria [2]
but also result in a ProteinCartography map that revealed clearly defined clusters that
should let us test our hypotheses (Figure 1).

What do RasGTPases do and why are they
important?

Ras GTPases are a well-studied superfamily of small monomeric GTPases that are key
participants in myriad signal transduction pathways, including membrane trafficking,
apoptosis, and cell differentiation [8]. In these processes, they function as binary
molecular switches controlled by the action of GAPs (GTPase-activating proteins),
which facilitate cleavage of the phosphate in GTP molecules, and GEFs (guanine
exchange factors), which allow for rapid dissociation of the bound GDP [9]. The Ras
superfamily includes the Ras, Rab, Ran, Rho, and Arf subfamilies [8]. Our analysis
includes members from each of these subfamilies, but we're primarily focused on the
Ras subfamily. The name Ras comes from the cancer-causing Rat sarcoma viruses
from which these genes were first sequenced [10]. Three human Ras genes encode
Ras subfamily members: HRas, KRas, and NRas [11]. HRas and KRas are ranked 28th
and 29th (respectively) in a list of the most-studied human proteins, so we've chosen
to focus on them here [4].

Mutations in Ras genes are implicated in up to 30% of cancers, as constitutively active
Ras results in uncontrollable cell proliferation [12]. As such, many studies have aimed
to reverse the constitutive activity of oncogenic Ras mutants. Despite a long-term

reputation as “undruggable,” recent focus on allele-specific inhibition of Ras has led to
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multiple promising cancer therapeutics [13]. In 2021, the FDA approved the first KRas
inhibitor, sotorasib, which binds mutated KRas as a therapy for KRas-related non-small
cell lung cancer [14]. Alternative work has focused on inhibiting Ras-effector
interactions and preventing activation of the signaling cascade [13]. Looking at Ras
proteins across species could give us more information about the function of this
master regulator, and a deeper structural and functional understanding of Ras proteins
might inform further therapeutic avenues.

Diving into the
ProteinCartography results for
the Ras GTPase family

Running ProteinCartography on Ras GTPases

To identify similar proteins to our inputs and explore the structural variation in this
protein family, we ran ProteinCartography analysis in “search mode” using human
HRas and KRas as inputs (UniProt IDs: PO1112 and_PO1116). ProteinCartography fetches
similar proteins based on structure and sequence. It compares every structure to

every other structure and generates TM-scores, or structural similarity scores,
between each pair of structures [15]. It uses these to create interactive UMAP and t-
SNE projections with overlaid Leiden clusters and metadata for exploration [16][17]
[18]. To learn more about how ProteinCartography works, visit our ProteinCartography

ub [1].

For this analysis, we requested 3,000 Foldseek hits, 7,000 BLAST hits, and 10,000 total
structures for both inputs combined. This run generated 5,421 unique structure hits
that the pipeline grouped into 12 clusters (Figure 1 and Figure 2, A). Both HRas and

KRas are in LCOO (Figure 1 and Figure 2, A). Since HRas and KRas are very similar, we

focus on just HRas in our downstream discussion. When we refer to the structural
similarity of clusters to an input protein, we perform those calculations by comparing
them to HRas alone (Figure 2, E).
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Interactive protein space with metadata overlays.

UMAP projection generated with ProteinCartography for
human HRas. Our input protein, human HRas, is in LCOO and
indicated by a four-pointed star. The overlays can be
changed via the drop-down “color” menu.



A full list of all the proteins in this analysis, plus all the aggregated information from the
pipeline is available in the aggregated features file linked below:

GTPase_HRas_KRas_aggregated_features_pca_umap.tsv

Assessing compactness and overall quality

Ouir first step was to assess the cluster similarity matrix (Figure 2, B) for inter- and intra-

cluster similarity. This can help us understand how well the clustering approach
separated the proteins. These values are determined by calculating the mean TM-
score of each protein in each cluster compared to every other protein in every cluster.
The TM-score tells us how similar two protein structures are, with a score of 1
indicating the structures are identical [15]. The diagonal of the matrix represents how
similar the structures of a cluster’s constituent proteins are to each other, and the
average of the diagonal is the “cluster compactness” score for the run. For the Ras
GTPases, that value is 0.68. This indicates that most clusters are quite compact — in
fact, all clusters except LC0O2, LCO7, and LC10 have compactness scores over 0.6
(Figure 2, B). Additionally, some clusters show cross-cluster similarity (i.e., they have a
high between-cluster mean TM-score), but many clusters appear distinct.

Next, we did a few quality checks on these outputs (Figure 1 and Figure 2). We first used
the structural confidence, or mean pLDDT, overlay to assess the structure quality and
the level of disorder of our output protein structures. In this case, the majority of the
structures have mean pLDDT scores around 80 (Figure 1). This value gave us
reasonably high confidence in the predicted structures and tells us that they likely

don’t contain large regions of disorder.

We next explored the TM-score overlay, which tells us the similarity of the fold of each
output protein to the fold of the input protein (here, human HRas). This can also serve
as a confidence metric. If our 5,421 hits were all very structurally similar to the input
(only high TM-scores), we might lack enough variation to find functional differences
between clusters. Conversely, if our hits were all extremely dissimilar (only low TM-
scores), it might suggest that we haven't captured closely related proteins. We found a
range of TM-scores, but overall this protein family had high TM-scores across the
board. In this case, the lowest TM-scores were around 0.5 (found in LC0O4, the Arfs),
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which suggests even
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adopt the same fold
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and Figure 2, E).
LCOO has, on
average, quite high
TM-scores (around
0.92) —an
encouraging sign, as

Leiden cluster

. . M 66 63 MWoe6 09
this cluster contains WOl me4 mer 19

. . 62 85 mes 11
the input protein

itself (ﬂgure 1and Broad Annotation pLDDT Length TM-score
faxon 2.5 5.0 |50 100 0 2008 0.5 1.8

Figure 2, E). Once we

LCee : _
confirmed that the input) [N » 4 é '«
outputs could yield Fungi | 9 8 t '
informative results, Mbed ‘—- ﬂ‘ } +
we moved on to Mixed 3 . ' .
assessing the
distribution of B C
taxonomic origins, S
lengths, and 3
annotation scores -3 S
i !
across clusters. &2 3 L
Similarity Annotated GTPase type
k / Rab Ran M Arf M Uncharacterized
6 8.2 9.4 8.6 8.8 1 M Ras W Rho  GTPase
£y i %

Taxon Similarity
Metazoa B Arthropoda M Archaea M !
Mammalia Plantae M Bacteria 6 6.2 6.4 8.6 8.8 1

Vertebrata Fungi



Figure 2

ProteinCartography outputs reveal interesting
clusters for proteins with structural similarity to

human HRas.

(A) The structure of human HRas, where orange
indicates regions of higher disorder, alongside the
UMAP projection with Leiden cluster overlay. Black
diamonds indicate the locations of the input proteins
(top, human HRas; bottom, human KRas). Note that
LCO4 is cropped out. Below the projection are violin
plots showing the distribution of key values for each of
our clusters of interest where the circle indicates the
median value. White dots mean the median is below
the threshold for significance, while filled-in dots
denote significance in a Mann-Whitney U test. “Broad
taxon” indicates taxonomic groups that are
represented in each cluster. “Annotation” is the UniProt
annotation score, or the relative confidence in each
functional annotation (scale: 1-5). “pLDDT” is the
confidence in the AlphaFold structural prediction for
each structure (scale: 0-100). “Length” is the number
of amino acids in each protein. “TM-score” is the
similarity of each structure to that of human HRas
(scale: 0-1).

(B) Cross-cluster similarity matrix. Each box represents
the average TM-score (structural similarity) when
comparing all structures in one cluster to all structures
in another, where a higher score means the structures
are more similar. The input cluster is marked with an
asterisk (*) and our clusters of interest are marked with
dots (e).

(C) UMAP projection with custom overlay showing
existing annotation. Annotations were manually sorted



into the known subfamilies of the Ras GTPase
superfamily.

(D) UMAP projection with taxonomic origin overlaid.

(E) UMAP projection with TM-scores (compared to the
input protein) overlaid. TM-scores indicate higher
structural similarity to human HRas.

(A, C-E) Dashed boxes mark our clusters of interest.

Exploring the data

In the following subsections, we walk through the most interesting clusters from our
ProteinCartography analysis. We use the metadata overlays and semantic analysis to
learn more about these clusters and to find proteins we can use to test our two
foundational hypotheses about ProteinCartography (that proteins within a cluster
function similarly and those in different clusters function differently).

SHOW ME THE DATA: Our full ProteinCartography analysis for the Ras GTPase
family is in this Zenodo repository (DOI: 10.5281/zeno0do.11288430).

LCOO: How does our input protein cluster?

We began by exploring LCOO, which contains our input proteins, to assess if the
outputs of ProteinCartography seem reliable and match what we’'d expect.
Taxonomically, LCOO mostly comprises metazoa, vertebrates, and arthropods (Figure
2, D). The average TM-score, or structural similarity, of proteins in this cluster
compared to human HRas is 0.92 (Figure 2, A), which suggests these proteins have
extremely similar structures. Though the length of human HRas is only 189 amino
acids, the average length for proteins in this cluster is 236 amino acids (Figure 2, A).
This means that at least some proteins in this cluster are longer than the human
protein. We could investigate whether these length differences within a cluster have
meaningful effects on biochemical function. Although LCOO contains both of our well-
annotated input proteins, the average annotation score for this cluster is 1.96 (Figure 2,
A), which is still quite low and indicates plenty of room for discovery even within the
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input-protein-containing cluster. If we find that representative proteins from this
cluster indeed share a function, it would support annotating all the proteins in the
cluster as Ras GTPases.

LCO3: Fungal homologs close in structure to human
HRas

Our next focus cluster was LCO3. While most of the clusters contain some
combination of taxonomic origins, LCO3 comprises entirely fungal proteins (Figure 2, A
and Figure 2, D). The average TM-score (structural similarity to the input) for proteins in
this cluster is quite high, at 0.93, implying that most of them adopt a highly similar fold
to human HRas (Figure 2, A and Figure 2, E). The majority of these proteins are
annotated as “Ras-like proteins” or “small monomeric GTPases,” though the average
annotation score for the cluster is low — only 1.4 (Figure 2, A and Figure 3). The average
length of proteins in this cluster is 226 (Figure 2, A). This is closer to the length of
human HRas (189 amino acids) than the average length of the proteins that co-
clustered with both HRas and KRas. The mean pLDDT, or structural confidence, for
proteins in this cluster is 81.4, suggesting that these proteins have some regions of
disorder (Figure 2, A). While this is within what we consider an acceptable range, it's
lower than our other clusters of interest and it could point to these proteins having

disordered regions and it may result in lower-confidence functional predictions.
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cluster, the plot contains a ranked bar chart and a word cloud. The chart includes

the top ten full annotation strings, while the word cloud shows the top individual

words that appear in the annotations. Hovering over a bar in the chart displays

the full annotation string and the number of proteins with that annotation.



LCO06 and LC09: Taxonomically diverse homologs
with generic annotations

After LCO3, we explored LCOB6. This cluster contains proteins of mixed taxonomic
origins, including fungi, vertebrates, and even a few archaea (Figure 2, A and Figure 2,
D). Despite this apparent diversity, there are no plants or bacteria represented. The
average TM-score for this cluster is 0.88; though lower than that of LCO3, this still
indicates that the proteins adopt the same general fold (Figure 2, A and Figure 2, E).
The average length is 208 amino acids, slightly closer to the length of human HRas
(189 amino acids) than either LCOO or LCO3 (Figure 2, A). Interestingly, this cluster has
an average annotation score of 2.0 (Figure 2, A), which is higher than we expected. This
is because there are quite a few well-annotated proteins mixed in with many that are
vaguely characterized or even entirely uncharacterized. The top annotation for this
cluster is simply “small monomeric GTPase,” a descriptor shared by all members of the
Ras superfamily (Figure 2, A and Figure 3).

Our final cluster of interest is LCO9. The average length of proteins in this cluster is 188
amino acids, similar to the 189 amino acids length of human HRas (Figure 2, A). In
many ways, LCO9 is similar to LCO6. This cluster, too, comprises proteins from mixed
taxonomic origins, with especially high representation from arthropods and other
ecdysozoans (Figure 2, A and Figure 2, D). There are two fungal proteins and quite a
few proteins from rotarians, but no representation of plants or bacteria. Similar to
LCOG, the average TM-score of these proteins is 0.88 and their average annotation
score is 2.1, suggesting the proteins share a fold with the input protein and that many
proteins in this cluster have confident annotations (Figure 2, A). However, the top
annotation for this cluster is the general annotation, “small monomeric GTPase”
(Figure 2, A and Figure 3). Interestingly, the cross-cluster compactness matrix
indicates that proteins in LCOS3 (all fungal proteins) and LCO9 have highly similar folds
to each other (Figure 2, B).

Overlaying annotation data

We produced custom metadata overlays to visualize trends between clusters. As
mentioned, the Ras family is part of the Ras superfamily, alongside the Ras, Rab, Ran,
Rho, and Arf families [8]. Did our clusters separate proteins into these well-known
groups simply based on structural comparisons? We first assessed the semantic



analysis, an output of the ProteinCartography pipeline that provides the top
annotations by cluster along with their counts. We saw that clusters tend to be
composed primarily of a single subfamily (Figure 3). We then went through and
manually categorized each protein into its subfamily (for example, we'd categorize a
protein annotated as “mitochondrial Rho GTPase (EC 3.6.5.-)" as simply “Rho”). The file
with manual annotation groups can be found here. Overlaying these general
annotations on top of our Leiden clusters, we recognized some patterns that support
this clustering strategy. First, each of the subfamilies cluster together quite well (Figure
2, C). For example, the Arf GTPases form a distinct cluster, LCO4 (Eigure 2, C). This is
expected, as Arfs are generally less related to the other Ras GTPase family members
[8]. Inspecting these more closely reveals that the Ran family clusters with the Rab
family; this is also expected because Rans are generally considered part of the Rab
family [8] (Figure 2, C). We also noticed “uncharacterized proteins” and vague
annotations like “GTP-binding protein” throughout the map.

Summary

We'll be testing the hypotheses that proteins clustered together function similarly and
proteins in different clusters have different functions. We can do so by comparing
proteins within LCOO, which contains our input protein HRas, and by comparing
proteins from various additional clusters to those in LCOO. Three candidate clusters
jumped out at us for this analysis due to their high TM-scores and low annotation
scores — LCO3, LCOB, and LCO9. The high TM-scores suggest these clusters have
captured proteins with strong structural similarity to human HRas, while their low
annotation scores indicate that they are under-studied (particularly experimentally). If
we can confirm their function in the lab, these are strong candidates for additional
functional annotation. You'll have the opportunity to vote on a favorite research
direction or comment with any further ideas below.
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What do you think?

Do proteins within clusters function similarly?

Here are our ideas about how we might answer this question.

1. We could characterize uncharacterized proteins from the cluster containing our
input protein to see if they have similar functions (in LCOQ). To start, we'll be testing

their GTPase activity compared to human HRas.

2. We could also refine the current annotations of proteins that are annotated too
broadly. Many proteins throughout the analysis are annotated as “GTP-binding

protein” or “small monomeric GTPase.”

Do these seem like reasonable approaches to test this hypothesis?

Do proteins in different clusters have different
functions?

Here are the clusters we're considering to answer this question. We plan to compare
proteins from these clusters to our input protein, which is in LCOO. This cluster
primarily contains metazoa, vertebrates, and arthropods.

1. LCO3 contains all fungal proteins with a highly similar fold to human HRas. The top
annotation for this cluster is “Ras-like proteins” or “small monomeric GTPases,”
but these annotations rank poorly in terms of quality and experimental support. By
studying this cluster, we might learn why these proteins cluster separately from the

input protein even though their fold is so similar.

2. LCO6 has mixed taxonomic origins, but lacks plants and bacteria. The structures
of proteins in this cluster are also highly similar to human HRas, although slightly
less than those in LCO3. Though the annotations in this cluster have slightly higher

confidence than LCOS3, there are still many proteins that are uncharacterized or



vaguely annotated. Like LCO3, we'd be interested in understanding why these

structurally similar proteins cluster separately from the input protein.

3. LCO9 has mixed taxonomic origins but includes many arthropods. The structures
of proteins in this cluster are about as similar to human HRas as those in LCOG6.
Additionally, these proteins are generally shorter than the other two clusters,
similar in length to human HRas. The proteins in this cluster are primarily
annotated as “GTP-binding protein” or something similarly generic. In addition to
learning why these proteins cluster separately from the input cluster, we could look
into why LCO3 and LCO9 cluster separately from each other even though they
seem to share a fold.

How should we approach working with Ras
GTPase proteins in vitro?

Once we select individual clusters and proteins, we'll purify each protein and test its
GTPase activity using an in vitro assay.



Are there tips/tricks/challenges to biochemical analysis of Ras GTPase?

Do you have ideas for functions or mechanisms of Ras GTPases that we might
want to test other than or in addition to intrinsic GTPase function?

Additional methods

We used ChatGPT to suggest wording ideas and then chose which small phrases or
sentence structure ideas to use.

Next steps

We're seeking feedback on selecting individual clusters and protein families for further
analysis in vitro. We aim to characterize the biochemical activity of a handful of these
proteins to test our overall hypotheses about how ProteinCartography clusters
proteins. However, there are additional analyses we can tackle in the meantime that

might tell us more about this protein family.

Align functional data in the literature with
ProteinCartography clustering

Because this protein family has been studied extensively, we wondered if we might find
information in the literature about the biochemical function of the proteins in our
analysis. Could we use the available data to help validate ProteinCartography and to
help narrow down which proteins we bring into the lab?

There are several annotated, biochemically characterized Ras superfamily proteins
that fit into the families we found in our analysis. We plan to curate available
experimental data on Ras GTPase homologs and see how well this info aligns with our
clustering.



Learn more about clusters and individual
proteins by studying specific, conserved
structural features

While ProteinCartography compares global protein structures, there’s much we could
learn by comparing specific aspects of the structures in this analysis. For example, we
could look at surface vs. buried residues, electrostatics, topology, hydrophobicity;,
secondary structural elements, and more.

We know that the function of these Ras GTPases depends on binding GTP, GAPs,
GEFs, and effectors. Because we know the regions responsible for each of these
functions, we can look for conservation of these structural features across the family.
By doing so, can we predict which GAPs and GEFs a given Ras GTPase interacts with?
Can we predict if proteins from certain organisms are more or less susceptible to
mutations that cause cancer in humans?

Summary

While we prepare for in vitro validation of ProteinCartography with Ras GTPases, we
hope to use additional information from the literature and from the structures
themselves to help us better understand the relationship between clustering and
function.
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