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Applying information
theory to genetics can
better explain biological
phenomena

Genetic models of complex traits often rely on incorrect assumptions

that drivers of trait variation are additive and independent. An

information theoretic framework for analyzing trait variation can

better capture phenomena like allelic dominance and gene-gene

interaction.
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Purpose

Genetic analysis has been one of the most powerful tools for biological discovery,

providing insight into almost every aspect of biology, ranging from identifying

mechanisms supporting the cell cycle [1][2], to guiding selective breeding for

agriculture [3], and identifying targets for disease treatment [4]. While phenotypes can

be simple (e.g., a single gene can cause differences in pea color or lead to a genetic

disease) the vast majority are subject to more elaborate causal mechanisms involving
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Historical background
Contemporary quantitative genetics treats genetic influences on phenotypes as

additive and independent of one another, and, generally any one phenotype is

assumed to be separate from others [6]. The reasons for this are both historical and

practical. Just prior to the turn of the last century, the study of human phenotypic

variation (biometrics) was at its peak. Early biometric studies observed that phenotypic

distributions among humans were often continuous and, across generations,

appeared to vary gradually and not in jumps (e.g., [8]). Therefore, the field assumed

many genetic and non-genetic factors. Researchers studying these phenotypes (often

called "complex" phenotypes) have relied on assumptions of additivity and

independence among the elements driving individual-to-individual phenotypic

variation. It’s widely appreciated that, in real data, these assumptions are often

violated, potentially limiting the utility of and accuracy of some analyses [5]. However,

this broad framework is retained for both historical and practical reasons [6][7]. Here,

we explore a different and complementary mathematical framework that makes no

assumptions about the drivers of phenotypic variation — we apply information theory to

genetic questions with the objective of conducting system-wide analysis of large sets

of genes, phenotypes, and environmental data.

This pub is intended as a regularly updated document covering how we are applying

information theory to broad questions in genetics. As time progresses, and we release

empirical studies of different topics, we will add sections here covering the information

theory relevant to those studies. This work should be of interest to both geneticists and

information theorists, but is primarily intended to formalize an information theoretic

approach to genetic problems and make that approach available to geneticists.

Accordingly, the first section after the introduction is a primer on major concepts in

information theory intended for geneticists. The subsequent sections contain

information theoretic definitions for genetic concepts and demonstrations of how

these definitions provide insight into genetic processes.

This pub is part of the platform effort, "Genetics: Decoding evolutionary drivers

across biology." Visit the platform narrative for more background and context.
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https://research.arcadiascience.com/genetics


that drivers of this continuous variation were themselves continuous, a model

consistent with the then-new theory of evolution — phenotypes were expected to

change gradually across generations. The tools and principles developed during the

period (e.g. the mixture model, the t-distribution, the chi-square distribution) reflect

these assumptions and, ultimately, came to form much of the theoretical backing of

modern statistical genetics [9].

Around the same time von Tischermark, de Vries, Spillman, and Correns

"rediscovered" the work of Gregor Mendel [10]. Mendel’s observations contradicted

the dogma of continuity developed by biometrics. Through now-famous sets of

experiments, Mendel found that phenotypes can in fact vary discretely within

populations and across generations. For example, the hybridization of a yellow and a

green pea plant could produce offspring that were either yellow or green, but not a

combination of the two. Thus, some of the inherited drivers of phenotypic differences

were discrete and not continuous. Subsequent experimental work in a variety of

different organisms has strongly reinforced this view [10] and ultimately led to the

generation of the term "gene" to describe the indivisible unit of heritable variation [11].

The presence of discrete units of inheritance (genes) and, in some settings, dramatic

phenotypic change across generations led to a "non-gradualistic" view of inheritance

(e.g., [12] and [13]). The "gradualists" and the "non-gradualists" were divided by a

fundamental problem: how could phenotypes — often continuous and only gradually

changing — be caused by discrete units of inheritance? Ronald Fisher provided a

reconciliation in 1918. Through groundbreaking theoretical work, Fisher demonstrated

that many discrete, additive, independent units of inheritance of small effect could

generate continuously varying phenotypes within a population [14]. Furthermore, these

assumptions were consistent with Mendel’s results. Fisher suggested that each trait

(and the factors influencing that trait) could segregate independently following mating.

By elegantly providing a resolution to the continuous/discrete paradox, Fisher thus

forged the fundamental assumptions for genetic analysis that we still rely on today [7].

However, in the following decades, extensive work on the function and inheritance of

genes established clear violations of additivity and independence [10]. Instead,

modern biology has demonstrated that genes and their products are highly interactive

and involved in complicated, nonlinear processes such as physical complexes,

regulatory circuits, and metabolic circuits. Furthermore, these complex interactions

may drive phenotypic variation across individuals via dependent and non-additive

relationships between genes.



A clear example of such nonlinear relationships is epistasis [15], in which the effect of

one gene can mask or modify the phenotypic impact of another. Epistasis is a

common feature of genetic systems and is so prevalent that researchers began to use

it to identify functionally related genes [10]. Genes that, when combined, caused no

different phenotype than the individual genes alone were called "epistasis groups." For

example, in Saccharomyces cerevisiae, the members of the RAD52 epistasis group

were all individually sensitive to irradiation, and when combined, were no more

sensitive than any one mutant. This suggests a functional relationship between the

individual genes; if a mutation in any one of the genes disrupts the "functional unit,"

then further mutations in other members of that unit will not change the phenotype

[16]. Many epistasis groups were identified through mutagenesis, but naturally

occurring epistasis is prevalent and important for evolution [17]. Fisher’s initial

reconciliation assumed no epistasis, an assumption that largely remains in

contemporary models [7]. Given the complexity of biological systems, the resulting

potential for phenomena like epistasis, and empirical evidence that such phenomena

exist, a modeling framework that does not include gene-gene interactions (as is

common in quantitative genetics) will likely fail to account for key aspects of the

genotype-phenotype map. Indeed, in recent years many studies have explicitly

demonstrated this problem [18].

To date, the solution has not been obvious. If we use the same statistical framework

that’s been applied historically, capturing nonlinear relationships among genes would

require data from an enormous number of individuals. Including interactions in

traditional linear models (e.g., genome-wide association studies) would require the

number of model parameters to scale with the square of the number of genetic or

environmental factors. It’s common to conduct human genetic analysis using

hundreds of thousands of genetic loci. Capturing interactions between even 100,000

loci would require a model with 10 billion parameters. Fitting such a model would

require data from more humans than exist. As a result, despite increasing

computational power, the utility of these models to effectively capture nonlinearity will

always be limited by the available data.

We suggest using information theory to quantify the drivers of trait variation.

Information theory was originally developed to formalize thinking about encoding

schemes for communication [19], and to provide answers to questions like, "What’s the

minimal amount of information required to encode a message?" or "How many bits of

information are required to store this text document?" Since its inception, information

theory has become very broad. Importantly for genetic analysis, we can use it to



partition and quantify the impact of factors driving variation in a set of data. This allows

us to answer questions like, "How much better can I predict the phenotype of an

individual if I know that individual’s genotype?" or "How much information does genetic

data contain about disease state?" In contrast to methods traditionally used in

quantitative genetics, it makes no assumptions about the nature of factors impacting

variation, so it may enable new, tractable, analyses capturing nonlinear relationships

and lead to better mappings between genotypes and phenotypes.

Entropy, divergence, and mutual
information
In this section, we review some fundamental components of information theory and

provide examples of how we might apply them to genetic data. In subsequent

sections, we’ll expand on these examples and contrast genetically relevant information

theoretic measures to similar measures from classical statistical genetics.

Entropy

Entropy, , is the average amount of information necessary to unambiguously encode

an event from a given "source" (defined by a probability distribution) and serves as a

measure of the "randomness" of the event and the source that generated the event. In

the context of genetics, the "source" could be a specific pair of parents or a specific

population of individuals and the "events" would be the offspring of the cross or the

members of that population. Across a given population, you could interpret the entropy

of a phenotype as its predictability (e.g., "How reliably can you guess the phenotype of

any given individual?"). Both genetic information (e.g., allelic state at a given locus) or

phenotypic information (e.g., disease state) could define a random variable. Here, we

provide the definition of entropy and examples of entropy calculations, first in the

simple context of coin flips and then in the context of genes and phenotypes.

For random variable  that can take values of the alphabet  and is distributed

according to  Probability{ } for all , the entropy, , of the

discrete random variable  is

H

X X

p(x) = X = x x ∈ X H(X)

X



 is the average (calculated above as the weighted sum) uncertainty of the values

of . By convention , so values of  with probability zero contribute no

entropy. The selection of base for the logarithm determines the units of information.

Here and for the rest of this work we use base 2, which results in information measured

in bits. For reference, one bit is the amount of information that can be encoded by a

binary digit.

Example 1: Coin tosses

Consider two coins: one fair, Pr{heads = 0.5}, and one biased, Pr{heads = 0.9}. The

degree of uncertainty about the outcome of a coin toss is higher for the fair coin as

compared to the biased coin. A toss of the fair coin is equally likely to result in heads or

tails. The biased coin is more likely to turn up heads. Entropy captures this intuition.

The entropy for the fair coin is

Whereas the entropy of the biased coin is

​

H(X) := − ​ p(x) log ​ p(x)
x∈X

∑ 2

H(X)

X 0 log 0 = 0 x

​ ​

H(X) = − ​ p(x ​) log ​ p(x ​)
i=1

∑
n

i 2 i

= − ​ 0.5 log ​ 0.5
i=1

∑
2

2

= − ​ 0.5 ⋅ −1
i=1

∑
2

= 0.5 + 0.5 = 1

​ ​

H(X) = − ​ p(x ​) log ​ p(x ​)
i=1

∑
n

i 2 i

= −0.9 ⋅ log ​(0.9) − 0.1 ⋅ log ​(0.1)2 2

≈ 0.137 + 0.332 ≈ 0.469



Thus, entropy is lower for the more predictable (biased) coin than for that of the less

predictable (fair) coin. Indeed, the fair coin, with equivalent probability for all states, has

the maximum entropy (1 bit) for a random variable with two states. For any random

variable, a probability distribution that is uniform across states results in the maximal

entropy.

Example 2: Allelic state at a single locus

Now consider two different genes,  and , with variation in allelic state across a

population of diploid organisms. One gene  has two alleles  and , resulting in

three allelic states, , , and , for any individual in this population. Similarly,

gene  has two alleles and three allelic states, , , and . The allelic states of

gene  are distributed uniformly across the population such that 1/3 individuals are

, 1/3 are , and 1/3 are . In contrast, gene  is distributed such that 8/10

individuals are , 1/10 are , and 1/10 are . The entropy of the allelic state of gene

 is

As compared to the fair coin, with only two possible outcomes, the "fair" (equal

probability of each allelic state across individuals) gene, with three possible states, has

an increase in entropy:  bit vs  bits. This is consistent with an increase in

uncertainty for variables with more possible states. The entropy of , with non-uniform

probability of allelic states, is

A B

A A a

AA Aa aa

B BB Bb bb

A

AA Aa aa B

BB Bb bb

A

​

H(A) = − ​ p(a ​) log ​ p(a ​)
i=1

∑
n

i 2 i

= − ​ ​ log ​ ​

i=1

∑
3

3
1

2 3
1

= − ​ ​ ⋅ −1.58
i=1

∑
3

3
1

= −p(a ​) log ​ p(a ​) − p(a ​) log ​ p(a ​) − p(a ​) log ​ p(a ​)AA 2 AA Aa 2 Aa aa 2 aa

≈ 0.528 + 0.528 + 0.528 ≈ 1.58

1 ∼ 1.58

B



Thus, the difference between  and  is the difference in randomness

between those two variables. As with the coin example, the gene with a uniform

probability distribution over possible states has more entropy (is more random) than

the gene with a non-uniform probability distribution over states.

Example 3: Single phenotype

Similar to allelic state, we can calculate the entropy of a phenotype in a population.

Unlike allelic state, phenotypes are often continuous (e.g., height) and not discrete

(e.g., disease state). Throughout this work, for simplicity of exposition, we will only

examine equations for discrete phenotypes. However, there are tools for estimating

the information theoretic values we describe for continuous variables as well. Consider

a disease trait  that can have two conditions, sick  and healthy , and  is

distributed according to probability mass function . Across the population, 1/10

individuals are sick and 9/10 individuals are healthy. The entropy of  is

Joint Entropy

We can extend the definition of entropy stated above to more than one random

variable. Given genes  and  with a joint distribution over allelic states of 

their joint entropy is

​ ​

H(B) = − ​ p(b ​) log ​ p(b ​)
i=1

∑
n

i 2 i

= −p(b ​) log ​ p(b ​) − p(b ​) log ​ p(b ​) − p(b ​) log ​ p(b ​)BB 2 BB Bb 2 Bb bb 2 bb

= −0.8 ⋅ log ​(0.8) − 0.1 ⋅ log ​(0.1) − 0.1 ⋅ log ​(0.1)2 2 2

≈ 0.258 + 0.332 + 0.332 ≈ 0.922

H(B) H(A)

T t T T

p(t)

T

​ ​

H(T ) = − ​ p(t ​) log ​ p(t ​)
i=1

∑
n

i 2 i

= −p(d ​) log ​ p(t ​) − p(t ​) log ​ p(t ​)T 2 T t 2 t

≈ 0.137 + 0.332 ≈ 0.469

A B p(a, b)

​ ​

H(A, B) := − ​ ​ p(a, b) log ​ p(a, b)
a∈A

∑
b∈B

∑ 2



where the joint entropy is less than or equal to the maximal entropy of  and ,

, with equality, , if and only if 

and  are independent. Two examples of "independent" genes would be genes that

are unlinked (e.g. two genes on different chromosomes) in a family or genes that have

no correlated structure in a more complex population. The joint entropy of these genes

would simply be the sum of their individual entropies. A corollary is that genes that are

linked or genes that are correlated in a larger population will have a joint entropy that is

less than the sum of their individual entropies.

As we will discuss later, the comparison between the maximal entropy and the joint

entropy of a set of variables (such as phenotypes) is the decrease in randomness

caused by relatedness among those variables. For a pair of traits,  and , 

 is the decrease in randomness in the set of variables caused by

knowing their joint distribution. Similarly, for a gene, , and a disease, , that is

partially caused by that gene, the distribution of  and the distribution of  are not

independent. Therefore  will be positive and, if there is no

other population structure, is a measure of the amount of variation in disease state

that is caused by the gene, .

Conditional entropy

For two variables  and , conditional entropy is the remaining randomness of  if 

is known and is defined as

If  and  are genes whose allelic state is evenly distributed across a population and

are completely linked, then knowing the allelic state of  would tell you the allelic state

of  and . In contrast, in a similar population, if  and  are completely

unlinked then ; knowing the allelic state of  tells you nothing about

the allelic state of . Here is a less deterministic example: for a gene, , and a

disease,  that is partially caused by that gene,  is the amount of variation in

disease state that is caused by factors other than .

Furthermore, . In the context of genetics, if gene  has three

allelic states in a population and gene  has two allelic states, but  and  are

completely linked, then . If you know the allelic state of , you know the

A B

H(A, B) ≤ H(A) + H(B) H(A, B) = H(A) + H(B) A

B

T ​1 T ​2 H(T ​) +1

H(T ​) −2 H(T ​, T ​)1 2

G T

G T

H(G) + H(T ) − H(G, T )

G

A B A B

​ ​

H(A∣B) := − ​ ​ p(a, b) log ​ p(a∣b)
a∈A

∑
b∈B

∑ 2

A B

B

A H(A∣B) = 0 A B

H(A∣B) = H(A) B

A G

T H(T ∣G)

G

H(A∣B) = H(B∣A) A

B A B

H(A) > H(B) A



allelic state of  ( ), but, knowing the allelic state of B does not completely

specify the allelic state of ; .

Mutual information

Mutual information, , is the amount of information shared between two random

variables.  between two random variables  and  is the decrease in

randomness in  if you know , or  if you know .

For two random variables  and , which can take values from alphabet  and 

respectively, and are distributed according to  Probability { } for all 

and  Probability { } for all , the mutual information between  and 

is

 is always positive, or is zero if and only if  and  are independent, and

. An alternative definition is

In other words, it is the degree to which dependency between  and  reduces the

joint entropy, , below the maximum possible joint entropy. For two completely

linked genes,  and , with the same number of alleles that are evenly distributed in a

population, . For similar but unlinked genes, .

In the context of a disease, , and a gene, ,  is the decrease of uncertainty

about disease state because you know the allelic state of .

Conditional mutual information

For three random variables, , , and , we can define conditional mutual

information as the shared information between  and  if we also know .

B H(B∣A) = 0

A H(A∣B) > 0

I

I(A; B) A B

A B B A

A B A B

p(a) = A = a a ∈ A

p(b) = B = b b ∈ B A B

​

I(A; B) := ​ p(a, b) log ​ ​

a∈A

∑
b∈B

∑ 2
p(a)p(b)
p(a, b)

I(A; B) A B

I(A; B) = I(B; A)

​ ​

I(A; B) := H(A) + H(B) − H(A, B)

A B

H(A, B)

A B

I(A; B) = H(A) = H(B) I(A; B) = 0

T G I(T ; G)

G

A B C

A B C

​ ​

I(A; B∣C) := H(A∣C) − H(A∣B, C)



 with equality if and only if  and  are independent if you know .

The conditional mutual information is the reduction in the uncertainty of  with

knowledge of  if we then add knowledge about . For example, we have a population

where two genes,  and , and a trait, , are segregating. The distribution of allelic

state of  is unrelated to the distribution of allelic state of  (i.e., ),

but variation in  combined with allelic variation at  causes all of the variation in .

In this case, even though  tells you nothing about  on its own, if conditioned on

knowledge of ,  can tell you something about . In other words, 

 even though . Furthermore, conditional mutual information provides

an extension to more than two variables, a property we will take advantage of later.

Kullback-Leibler divergence

Kullback-Leibler divergence, , (also called relative entropy) is a quantification of the

difference between two probability distributions. The  between distributions  and

 using the same alphabet  is the extra information needed to encode a set of data

distributed according to  using . It is defined as

 is always positive, and zero if and only if . It is a critical component of

information theory and is used (in addition to the highly related cross-entropy)

extensively in machine learning when the goal is to approximate an unknown

probability distribution. We include it here because examining the equivalency below

can provide intuition not only about , but also mutual information. An alternate

definition for mutual information is

In other words, the mutual information between  and  is the information lost by

assuming that  and  are distributed independently when, in fact, they are not.

I(A; B∣C) ≥ 0 A B C

A

C B

G ​1 G ​2 T

G ​1 G ​2 I(G ​; G ​) =1 2 0

G ​1 G ​2 T

G ​1 G ​2

T G ​1 G ​2 I(G ​; G ​∣T ) ≥1 2

0 I(G ​; G ​) =1 2 0

D ​kl

D ​kl p

q A

p q

​ ​

D ​(p∣∣q) := ​ p(a) log ​ ​kl

a∈A

∑ 2
q(a)
p(a)

D ​(p∣∣q)kl p = q

D ​kl

​ ​

I(A; B) = D ​(p(a, b)∣∣p(a)p(b))kl

A B

A B



Equivalencies

We note here a series of useful equivalencies. Throughout the rest of this pub, we will

use  to refer to genes and  to refer to traits or phenotypes.

Extension to multiple genes and multiple

phenotypes

Thus far we have mostly discussed individual random variables (e.g., single genes or

phenotypes), but we can extend entropy, mutual information, and Kullback-Leibler

divergence to cover the joint distribution of many variables, like a set of genetic loci or

phenotypes. This results from the chain rule for probability and is most readily seen for

entropy, where we have already defined joint and conditional entropy.

Chain rule for entropy

The joint entropy of  and  can be written as

Or, the joint entropy of  and  is the entropy of  plus the residual entropy in  if you

know . Repeated application of this method provides

G T

​ ​

I(G; T ) = H(G) + H(T ) − H(G, T )

I(G; T ) = I(T ; G)

I(G; T ) = H(G) − H(G∣T )

I(G; T ) = H(T ) − H(T ∣G)

A B

​ ​

H(A, B) = H(A) + H(B∣A)

A B A B

A

​ ​

H(A, B, C) = H(A) + H(B∣A) + H(C∣B, A)

⋮

​ ​

H(A ​, A ​ … , A ​) = ​ H(A ​∣A ​, … , A ​)1 2 n

i=1

∑
n

i i−1 1



In other words, the joint entropy of a set of variables is the sum of their conditional

entropies. For , , and , or any other set of variables that are independent, their

joint entropy is equal to the sum of their individual entropies. Or,

if , , and  are independent.

Chain rule for mutual information

We can apply a similar chain rule for mutual information, letting us extend to multiple

random variables. We will not expand on this here, but, essentially, the variable

expansion done previously to define conditional mutual information (jump to that

equation) can be repeatedly applied to show that

Essentially, the mutual information between a set of variables and another set of

variables is the sum of the conditional mutual information values.

Given the ability to extend these measures to an arbitrary number of variables, we will

indicate sets of variables with a sub bar. For example, we will denote sets of genes,

phenotypes (or traits), and environments as , , and , respectively.

Applying information theory to
genetics
Having established some of the fundamental measures in information theory and

examples of their application, we now expand on these definitions and apply them to

broader genetic questions. Where appropriate, we compare the information theory-

based assessments with classical statistical genetic measures.

A B C

​

H(A, B, C) = H(A) + H(B) + H(C)

A B C

​ ​

I(A ​, A ​ … , A ​; B) = ​ I(A ​; B∣A ​, … , A ​)1 2 n

i=1

∑
n

i i−1 1

​G ​T ​E



Polyphenotypic analysis

Genetic analysis has most often focused on individual phenotypes, e.g., "How tall are

the members of a population?", or, "Do cells pause at a particular stage of the cell

cycle?" But considering multiple phenotypes simultaneously may provide more insight

into overall organismal features than focusing on any one phenotype. For example, an

organism’s height is likely linked to other organismal features (e.g., mass and

metabolic rate) both causally and otherwise, so studying both height and metabolic

rate together may enable more accurate predictions than studying height alone.

However, the quantitative genetic infrastructure for simultaneous analysis of multiple

phenotypes is poorly developed.

In a companion pub [20], we argue that examining multiple phenotypes

simultaneously can provide better insight into the nature of individual phenotypes.

Across a population, phenotypes are often correlated. That correlation could result

from shared, causal, genetic variation, or from non-causal correlation like genetic drift

or migration. We’ve shown that incorporating the correlational relationships between

phenotypes into predictive models can increase prediction accuracy. We further

showed empirically that increasing pleiotropy among a fixed set of genes ( ) and

phenotypes ( ) decreases the joint phenotypic entropy. If we measure the total

phenotypic entropy as , then the joint entropy must be less than or equal to the

maximum entropy

with equality if, and only if, all phenotypes are independent of one another. Thus, the

difference between the maximal phenotypic entropy and the total joint phenotypic

entropy is the reduction in uncertainty caused by correlations (additive or otherwise)

across phenotypes. In other words, we can quantify the amount of phenotype-

phenotype structure by estimating the difference between the joint entropy and the

maximal entropy. Importantly, this quantification provides examination of the

relatedness (or lack thereof) among phenotypes without genetic or environmental

information. Phenotypes with maximal entropy share no common cause or non-causal

drivers of correlation. Thus, absent environmental variation or phenotypic correlations

that are created by population structure, pairs of phenotypes with less than maximum

entropy share a cause and those causes are, to some degree, epistatic.

​G

​T

H( ​)T

​

H( ​) ≤ ​ H(T ​)T

i=1

∑
n

i



Examination of many phenotypes likely provides

information about any one phenotype

Given dependence among phenotypes, examining one phenotype should provide

information about other phenotypes. In other words, conditioning the entropy of one

set of phenotypes, , on another phenotype, , will reduce the entropy (except in the

case of independence).

Theorem:

Proof:

This shows that, given some correlated structure among traits, examining many

phenotypes will be useful in predicting any one phenotype; something we have

empirically demonstrated in our companion pub [20]. Furthermore, in the same pub

we show that examining increasing numbers of phenotypes doesn’t reduce the

amount of information about any one phenotype. However, we often estimate

information theoretic values using numerical methods and, as a result, there is a limit

to the number of phenotypes it is practical to examine.

Pleiotropy decreases total trait entropy

Pleiotropy is the observation that allelic state at any one genomic location impacts

multiple phenotypes. Intuitively, for any fixed set of phenotypes and genes impacting

those phenotypes, increasing pleiotropy will increase co-variation among phenotypes

and thus decrease the total trait entropy. For traits  and  and gene , we can

define the pleiotropy as

​T T ​i

​

H( ​∣T ​) ≤ H( ​)T i T

​ ​

I( ​; T ​) ≥ 0T i

H( ​) − H( ​∣T ​) ≥ 0T T i

H( ​) ≥ H( ​∣T ​)T T i

H( ​∣T ​) ≤ H( ​)T i T

T ​1 T ​2 G



This is the amount of information shared between  and  that can be accounted for

if  is known. This is an extension of mutual information to multiple variables, known

as interaction information. Unlike mutual information, interaction information can be

negative. However, if , , and  form a Markov chain such that  and  are

independent, conditional on , then  and this reduces to .

With this definition of pleiotropy, we can show that the presence of pleiotropy will

decrease the joint phenotypic entropy.

Theorem:

If , , and  form a Markov chain such that  and  are independent conditional

on , then increasing pleiotropy will lead to decreased joint trait entropy.

Proof:

where  is the maximum possible entropy if  and  are totally

independent and  is the joint entropy of  and .

In this section, we’ve shown several ways in which we can apply information theory to

the analysis of multiple phenotypes. First, we showed that the deviation between the

maximal phenotypic entropy and the joint phenotypic entropy provides a quantification

of the relational structure of a set of phenotypes, which may result from shared

causes. Importantly, we can use this to show that some phenotypes are unrelated from

others, a situation that would only result if there was no shared causation among those

phenotypes. Second, we show that increasing the number of phenotypes in an

analysis should increase our understanding of other phenotypes. And finally, we

provide a mathematical definition of pleiotropy and show that increasing pleiotropy

should, in some circumstances, decrease overall phenotypic entropy. While also

​

Pleio(T ​, T ​, G) = I(T ​; T ​) − I(T ​; T ​∣G)1 2 1 2 1 2

T ​1 T ​2

G

T ​1 T ​2 G T ​1 T ​2

G I(T ​, T ​∣G) =1 2 0 I(T ​, T ​)1 2

T ​1 T2 G T ​1 T ​2

G

​ ​

Pleio(T ​, T ​, G) > 01 2

I(T ​; T ​) − I(T ​; T ​∣G) > 01 2 1 2

I(T ​; T ​) > 01 2

H(T ​) + H(T ​) − H(T ​, T ​) > 01 2 1 2

H(T ​) + H(T ​) > H(T ​, T ​)1 2 1 2

H(T ​) +1 H(T ​)2 T ​1 T ​2

H(T ​, T ​)1 2 T ​1 T ​2



demonstrating these findings empirically in a companion pub [20], these formalisms

provide certain guarantees about such analyses.

Key takeaways
We provide formalisms for the analysis of cohorts of phenotypes ("polyphenotypes")

using information theory.

Analysis of individual phenotypes will benefit from examining a polyphenotype.

Polyphenotypic analysis does not require genetic or other causal information.

We can identify sets of phenotypes that are causally independent.

What’s next?
We’ve presented a few examples of information theory applied to genetic questions.

We view this as a work in progress and will, along with empirical and numerical studies

in other pubs, expand these ideas into other areas of genetics and genetic analysis as

our work progresses.
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