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Applying information
theory to genetics can
better explain biological
phenomena

Genetic models of complex traits often rely on incorrect assumptions
that drivers of trait variation are additive and independent. An
information theoretic framework for analyzing trait variation can
better capture phenomena like allelic dominance and gene-gene
interaction.
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Purpose

Genetic analysis has been one of the most powerful tools for biological discovery,
providing insight into almost every aspect of biology, ranging from identifying
mechanisms supporting the cell cycle [1][2], to guiding selective breeding for
agriculture [3], and identifying targets for disease treatment [4]. While phenotypes can
be simple (e.g., a single gene can cause differences in pea color or lead to a genetic

disease) the vast majority are subject to more elaborate causal mechanisms involving
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many genetic and non-genetic factors. Researchers studying these phenotypes (often
called "complex" phenotypes) have relied on assumptions of additivity and
independence among the elements driving individual-to-individual phenotypic
variation. It’s widely appreciated that, in real data, these assumptions are often
violated, potentially limiting the utility of and accuracy of some analyses [5]. However,
this broad framework is retained for both historical and practical reasons [6][7]. Here,
we explore a different and complementary mathematical framework that makes no
assumptions about the drivers of phenotypic variation — we apply information theory to
genetic questions with the objective of conducting system-wide analysis of large sets
of genes, phenotypes, and environmental data.

This pub is intended as a regularly updated document covering how we are applying
information theory to broad questions in genetics. As time progresses, and we release
empirical studies of different topics, we will add sections here covering the information
theory relevant to those studies. This work should be of interest to both geneticists and
information theorists, but is primarily intended to formalize an information theoretic
approach to genetic problems and make that approach available to geneticists.
Accordingly, the first section after the introduction is a primer on major concepts in
information theory intended for geneticists. The subsequent sections contain
information theoretic definitions for genetic concepts and demonstrations of how

these definitions provide insight into genetic processes.

« This pub is part of the platform effort, "Genetics: Decoding_evolutionary drivers

across biology." Visit the platform narrative for more background and context.

Historical background

Contemporary quantitative genetics treats genetic influences on phenotypes as
additive and independent of one another, and, generally any one phenotype is
assumed to be separate from others [6]. The reasons for this are both historical and
practical. Just prior to the turn of the last century, the study of human phenotypic
variation (biometrics) was at its peak. Early biometric studies observed that phenotypic
distributions among humans were often continuous and, across generations,
appeared to vary gradually and not in jumps (e.g., [8]). Therefore, the field assumed
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that drivers of this continuous variation were themselves continuous, a model
consistent with the then-new theory of evolution — phenotypes were expected to
change gradually across generations. The tools and principles developed during the
period (e.g. the mixture model, the t-distribution, the chi-square distribution) reflect
these assumptions and, ultimately, came to form much of the theoretical backing of
modern statistical genetics [9].

Around the same time von Tischermark, de Vries, Spillman, and Correns
"rediscovered" the work of Gregor Mendel [10]. Mendel’s observations contradicted
the dogma of continuity developed by biometrics. Through now-famous sets of
experiments, Mendel found that phenotypes can in fact vary discretely within
populations and across generations. For example, the hybridization of a yellow and a
green pea plant could produce offspring that were either yellow or green, but not a
combination of the two. Thus, some of the inherited drivers of phenotypic differences
were discrete and not continuous. Subsequent experimental work in a variety of
different organisms has strongly reinforced this view [10] and ultimately led to the
generation of the term "gene" to describe the indivisible unit of heritable variation [11].

The presence of discrete units of inheritance (genes) and, in some settings, dramatic
phenotypic change across generations led to a "non-gradualistic" view of inheritance
(e.g., [12] and [13]). The "gradualists" and the "non-gradualists” were divided by a
fundamental problem: how could phenotypes — often continuous and only gradually
changing — be caused by discrete units of inheritance? Ronald Fisher provided a
reconciliation in 1918. Through groundbreaking theoretical work, Fisher demonstrated
that many discrete, additive, independent units of inheritance of small effect could
generate continuously varying phenotypes within a population [14]. Furthermore, these
assumptions were consistent with Mendel’s results. Fisher suggested that each trait
(and the factors influencing that trait) could segregate independently following mating.
By elegantly providing a resolution to the continuous/discrete paradox, Fisher thus
forged the fundamental assumptions for genetic analysis that we still rely on today [7].

However, in the following decades, extensive work on the function and inheritance of
genes established clear violations of additivity and independence [10]. Instead,
modern biology has demonstrated that genes and their products are highly interactive
and involved in complicated, nonlinear processes such as physical complexes,
regulatory circuits, and metabolic circuits. Furthermore, these complex interactions
may drive phenotypic variation across individuals via dependent and non-additive
relationships between genes.



A clear example of such nonlinear relationships is epistasis [15], in which the effect of
one gene can mask or modify the phenotypic impact of another. Epistasis is a
common feature of genetic systems and is so prevalent that researchers began to use
it to identify functionally related genes [10]. Genes that, when combined, caused no
different phenotype than the individual genes alone were called "epistasis groups." For
example, in Saccharomyces cerevisiae, the members of the RAD52 epistasis group
were all individually sensitive to irradiation, and when combined, were no more
sensitive than any one mutant. This suggests a functional relationship between the
individual genes; if a mutation in any one of the genes disrupts the "functional unit,"
then further mutations in other members of that unit will not change the phenotype
[16]. Many epistasis groups were identified through mutagenesis, but naturally
occurring epistasis is prevalent and important for evolution [17]. Fisher’s initial
reconciliation assumed no epistasis, an assumption that largely remains in
contemporary models [7]. Given the complexity of biological systems, the resulting
potential for phenomena like epistasis, and empirical evidence that such phenomena
exist, a modeling framework that does not include gene-gene interactions (as is
common in quantitative genetics) will likely fail to account for key aspects of the
genotype-phenotype map. Indeed, in recent years many studies have explicitly
demonstrated this problem [18].

To date, the solution has not been obvious. If we use the same statistical framework
that’s been applied historically, capturing nonlinear relationships among genes would
require data from an enormous number of individuals. Including interactions in
traditional linear models (e.g., genome-wide association studies) would require the
number of model parameters to scale with the square of the number of genetic or
environmental factors. It's common to conduct human genetic analysis using
hundreds of thousands of genetic loci. Capturing interactions between even 100,000
loci would require a model with 10 billion parameters. Fitting such a model would
require data from more humans than exist. As a result, despite increasing
computational power, the utility of these models to effectively capture nonlinearity will
always be limited by the available data.

We suggest using information theory to quantify the drivers of trait variation.
Information theory was originally developed to formalize thinking about encoding
schemes for communication [19], and to provide answers to questions like, "What’s the
minimal amount of information required to encode a message?" or "How many bits of
information are required to store this text document?" Since its inception, information

theory has become very broad. Importantly for genetic analysis, we can use it to



partition and quantify the impact of factors driving variation in a set of data. This allows
us to answer questions like, "How much better can | predict the phenotype of an
individual if | know that individual’s genotype?" or "How much information does genetic
data contain about disease state?" In contrast to methods traditionally used in
quantitative genetics, it makes no assumptions about the nature of factors impacting
variation, so it may enable new, tractable, analyses capturing nonlinear relationships
and lead to better mappings between genotypes and phenotypes.

Entropy, divergence, and mutual
information

In this section, we review some fundamental components of information theory and
provide examples of how we might apply them to genetic data. In subsequent
sections, we'll expand on these examples and contrast genetically relevant information

theoretic measures to similar measures from classical statistical genetics.

Entropy

Entropy, H, is the average amount of information necessary to unambiguously encode
an event from a given "source" (defined by a probability distribution) and serves as a
measure of the "randomness" of the event and the source that generated the event. In
the context of genetics, the "source" could be a specific pair of parents or a specific
population of individuals and the "events" would be the offspring of the cross or the
members of that population. Across a given population, you could interpret the entropy
of a phenotype as its predictability (e.g., "How reliably can you guess the phenotype of
any given individual?"). Both genetic information (e.g., allelic state at a given locus) or
phenotypic information (e.g., disease state) could define a random variable. Here, we
provide the definition of entropy and examples of entropy calculations, first in the
simple context of coin flips and then in the context of genes and phenotypes.

For random variable X that can take values of the alphabet X and is distributed
according to p(z) = Probability{ X = z}forallx € X, the entropy, H(X), of the
discrete random variable X is



H(X) :=—) p(x)log, p(x)

reX

H(X) is the average (calculated above as the weighted sum) uncertainty of the values
of X. By convention 0log 0 = 0, so values of x with probability zero contribute no
entropy. The selection of base for the logarithm determines the units of information.
Here and for the rest of this work we use base 2, which results in information measured
in bits. For reference, one bit is the amount of information that can be encoded by a

binary digit.

Example 1: Coin tosses

Consider two coins: one fair, Pr{heads = 0.5}, and one biased, Pr{heads = 0.9}. The
degree of uncertainty about the outcome of a coin toss is higher for the fair coin as
compared to the biased coin. A toss of the fair coin is equally likely to result in heads or
tails. The biased coin is more likely to turn up heads. Entropy captures this intuition.
The entropy for the fair coin is

H(X)=— Zp(ivz) log, p(z;)

2
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2
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Whereas the entropy of the biased coin is

H(X) = - Zp(wz’) log, p(x;)

~ 0.137 4 0.332 ~ 0.469



Thus, entropy is lower for the more predictable (biased) coin than for that of the less
predictable (fair) coin. Indeed, the fair coin, with equivalent probability for all states, has
the maximum entropy (1 bit) for a random variable with two states. For any random
variable, a probability distribution that is uniform across states results in the maximal
entropy.

Example 2: Allelic state at a single locus

Now consider two different genes, A and B, with variation in allelic state across a
population of diploid organisms. One gene A has two alleles A and a, resulting in
three allelic states, A A, Aa, and aa, for any individual in this population. Similarly,
gene B has two alleles and three allelic states, BB, Bb, and bb. The allelic states of
gene A are distributed uniformly across the population such that 1/3 individuals are
AA, 1/3 are Aa, and 1/3 are aa. In contrast, gene B is distributed such that 8/10

individuals are BB, 1/10 are Bb, and 1/10 are bb. The entropy of the allelic state of gene
Ais

H(A) = - Zp(az') log, p(a;)

=1

1
— —Z 5 —1.58
=1

= _p(aAA) log, p(aAA) - p(aAa) log, p(aAa) - P(aaa) log, P(aaa
~ 0.528 + 0.528 + 0.528 ~ 1.58

As compared to the fair coin, with only two possible outcomes, the "fair" (equal
probability of each allelic state across individuals) gene, with three possible states, has
an increase in entropy: 1 bit vs ~ 1.58 bits. This is consistent with an increase in
uncertainty for variables with more possible states. The entropy of B, with non-uniform
probability of allelic states, is



H(B) = — Zp(bz') log, p(bi)

= —p(bg) log, p(ber) — p(bms) logs p(bss) — P(by) logs p(bys)
= —0.8 - log,(0.8) — 0.1 - log,(0.1) — 0.1 - log,(0.1)

~ 0.258 + 0.332 + 0.332 ~ 0.922

Thus, the difference between H(B) and H(A) is the difference in randomness
between those two variables. As with the coin example, the gene with a uniform
probability distribution over possible states has more entropy (is more random) than
the gene with a non-uniform probability distribution over states.

Example 3: Single phenotype

Similar to allelic state, we can calculate the entropy of a phenotype in a population.
Unlike allelic state, phenotypes are often continuous (e.g., height) and not discrete
(e.g., disease state). Throughout this work, for simplicity of exposition, we will only
examine equations for discrete phenotypes. However, there are tools for estimating
the information theoretic values we describe for continuous variables as well. Consider
a disease trait 1" that can have two conditions, sick ¢ and healthy T', and 1" is
distributed according to probability mass function p(t). Across the population, 1/10
individuals are sick and 9/10 individuals are healthy. The entropy of T is

H(T) = - Zp ) log, p(t:)

= —p(dT) log, p(tr) — p(t:) log, p(t:)
~ 0.137 + 0.332 ~ 0.469

Joint Entropy

We can extend the definition of entropy stated above to more than one random
variable. Given genes A and B with a joint distribution over allelic states of p(a, b)
their joint entropy is

H(A, B) = — Z Zp(a’ b) log, p(a, b)

acA beB



where the joint entropy is less than or equal to the maximal entropy of A and B,

H(A, B) < H(A) + H(B), with equality, H(A, B) = H(A) + H(B),ifand only if A
and B are independent. Two examples of "independent" genes would be genes that
are unlinked (e.g. two genes on different chromosomes) in a family or genes that have
no correlated structure in a more complex population. The joint entropy of these genes
would simply be the sum of their individual entropies. A corollary is that genes that are
linked or genes that are correlated in a larger population will have a joint entropy that is
less than the sum of their individual entropies.

As we will discuss later, the comparison between the maximal entropy and the joint
entropy of a set of variables (such as phenotypes) is the decrease in randomness
caused by relatedness among those variables. For a pair of traits, 77 and Ty, H(T}) +
H(T) — H(T1, T3) is the decrease in randomness in the set of variables caused by
knowing their joint distribution. Similarly, for a gene, GG, and a disease, T, that is
partially caused by that gene, the distribution of G and the distribution of 1" are not
independent. Therefore H(G) + H(T') — H(G, T') will be positive and, if there is no
other population structure, is a measure of the amount of variation in disease state
that is caused by the gene, G.

Conditional entropy

For two variables A and B, conditional entropy is the remaining randomness of A if B

is known and is defined as

H(AIB) i= — 3 3 pla, b) log, p(alt)

acA beB

If A and B are genes whose allelic state is evenly distributed across a population and
are completely linked, then knowing the allelic state of B would tell you the allelic state
of Aand H(A|B) = 0. In contrast, in a similar population, if A and B are completely
unlinked then H(A|B) = H(A); knowing the allelic state of B tells you nothing about
the allelic state of A. Here is a less deterministic example: for a gene, G, and a
disease, T that is partially caused by that gene, H(T'|G) is the amount of variation in
disease state that is caused by factors other than G.

Furthermore, H(A|B) # H(B|A). In the context of genetics, if gene A has three
allelic states in a population and gene B has two allelic states, but A and B are
completely linked, then H(A) > H(B). If you know the allelic state of A, you know the



allelic state of B (H(B|A) = 0), but, knowing the allelic state of B does not completely
specify the allelic state of A; H(A|B) > 0.

Mutual information

Mutual information, I, is the amount of information shared between two random
variables. I( A; B) between two random variables A and B is the decrease in
randomness in A if you know B, or B if you know A.

For two random variables A and B, which can take values from alphabet A and BB
respectively, and are distributed according to p(a) = Probability {A = a}foralla € A
and p(b) = Probability {B = b} for all b € B, the mutual information between A and B

is

la,b)
=22 e b)le oo
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I(A; B) is always positive, or is zero if and only if A and B are independent, and
I(A; B) = I(Bj; A). An alternative definition is

I(A; B) := H(A) + H(B) — H(4, B)

In other words, it is the degree to which dependency between A and B reduces the
joint entropy, H(A, B), below the maximum possible joint entropy. For two completely
linked genes, A and B, with the same number of alleles that are evenly distributed in a
population, I(4; B) = H(A) = H(B). For similar but unlinked genes, I(4; B) = 0.
In the context of a disease, T', and a gene, G, I(T'; G) is the decrease of uncertainty
about disease state because you know the allelic state of G.

Conditional mutual information

For three random variables, A, B, and C, we can define conditional mutual
information as the shared information between A and B if we also know C.

I(A; B|C) :=H(A|C) —H(A|B,C)



I(A; B|C) > 0 with equality if and only if A and B are independent if you know C.
The conditional mutual information is the reduction in the uncertainty of A with
knowledge of C'if we then add knowledge about B. For example, we have a population
where two genes, (G1 and G2, and a trait, T', are segregating. The distribution of allelic
state of GG is unrelated to the distribution of allelic state of G5 (i.e., I(G1; G3) = 0),
but variation in G; combined with allelic variation at G5 causes all of the variation in 7.
In this case, even though (G tells you nothing about G5 on its own, if conditioned on
knowledge of T', G1 can tell you something about G. In other words, I(G1; Go|T') >
0 even though I(G1; G2) = 0. Furthermore, conditional mutual information provides
an extension to more than two variables, a property we will take advantage of later.

Kullback-Leibler divergence

Kullback-Leibler divergence, Dy, (also called relative entropy) is a quantification of the
difference between two probability distributions. The Dy; between distributions p and
q using the same alphabet A is the extra information needed to encode a set of data
distributed according to p using q. It is defined as

Dii(pllg) :== Y _p(a)log, Ea;
acA

Dyi(p||q) is always positive, and zero if and only if p = q. It is a critical component of
information theory and is used (in addition to the highly related cross-entropy)
extensively in machine learning when the goal is to approximate an unknown
probability distribution. We include it here because examining the equivalency below
can provide intuition not only about Dy;, but also mutual information. An alternate
definition for mutual information is

I(4; B) = Dy (p(a, b)||p(a)p(b))

In other words, the mutual information between A and B is the information lost by

assuming that A and B are distributed independently when, in fact, they are not.



Equivalencies

We note here a series of useful equivalencies. Throughout the rest of this pub, we will
use G to refer to genes and T to refer to traits or phenotypes.

I(G;T)=H(G) + H(T) - H(G,T)
I(G;T) =1(T;G)

I(G;T) = H(G) — H(G|T)

I(G;T) = H(T) — H(T|G)

Extension to multiple genes and multiple
phenotypes

Thus far we have mostly discussed individual random variables (e.g., single genes or
phenotypes), but we can extend entropy, mutual information, and Kullback-Leibler
divergence to cover the joint distribution of many variables, like a set of genetic loci or
phenotypes. This results from the chain rule for probability and is most readily seen for

entropy, where we have already defined joint and conditional entropy.

Chain rule for entropy

The joint entropy of A and B can be written as
H(A, B) = H(A) + H(B|A)

Or, the joint entropy of A and B is the entropy of A plus the residual entropy in B if you
know A. Repeated application of this method provides

H(A, B,C) = H(A) + H(B|A) + H(C|B, A)

H(A17 A2 .. 7An) - ZH(AZ|AZ—13 s )Al)
=1



In other words, the joint entropy of a set of variables is the sum of their conditional
entropies. For A, B, and C, or any other set of variables that are independent, their
joint entropy is equal to the sum of their individual entropies. Or,

H(A, B,C) = H(A) + H(B) + H(C)

if A, B, and C are independent.

Chain rule for mutual information

We can apply a similar chain rule for mutual information, letting us extend to multiple
random variables. We will not expand on this here, but, essentially, the variable
expansion done previously to define conditional mutual information (jump to that

eqguation) can be repeatedly applied to show that

I(Al,A2 .- -,An;B) - ZI(AHB’Ai—la . -7A1)

1=1

Essentially, the mutual information between a set of variables and another set of
variables is the sum of the conditional mutual information values.

Given the ability to extend these measures to an arbitrary number of variables, we will
indicate sets of variables with a sub bar. For example, we will denote sets of genes,
phenotypes (or traits), and environments as G, T', and E, respectively.

Applying information theory to
genetics

Having established some of the fundamental measures in information theory and
examples of their application, we now expand on these definitions and apply them to
broader genetic questions. Where appropriate, we compare the information theory-
based assessments with classical statistical genetic measures.



Polyphenotypic analysis

Genetic analysis has most often focused on individual phenotypes, e.g., "How tall are
the members of a population?”, or, "Do cells pause at a particular stage of the cell
cycle?" But considering multiple phenotypes simultaneously may provide more insight
into overall organismal features than focusing on any one phenotype. For example, an
organism’s height is likely linked to other organismal features (e.g., mass and
metabolic rate) both causally and otherwise, so studying both height and metabolic
rate together may enable more accurate predictions than studying height alone.
However, the quantitative genetic infrastructure for simultaneous analysis of multiple
phenotypes is poorly developed.

In a companion pub [20], we argue that examining multiple phenotypes
simultaneously can provide better insight into the nature of individual phenotypes.
Across a population, phenotypes are often correlated. That correlation could result
from shared, causal, genetic variation, or from non-causal correlation like genetic drift
or migration. We've shown that incorporating the correlational relationships between
phenotypes into predictive models can increase prediction accuracy. We further
showed empirically that increasing pleiotropy among a fixed set of genes (G) and
phenotypes (I') decreases the joint phenotypic entropy. If we measure the total
phenotypic entropy as H(I) then the joint entropy must be less than or equal to the

maximum entropy
H(T) < ) H(T})
1=1

with equality if, and only if, all phenotypes are independent of one another. Thus, the
difference between the maximal phenotypic entropy and the total joint phenotypic
entropy is the reduction in uncertainty caused by correlations (additive or otherwise)
across phenotypes. In other words, we can quantify the amount of phenotype-
phenotype structure by estimating the difference between the joint entropy and the
maximal entropy. Importantly, this quantification provides examination of the
relatedness (or lack thereof) among phenotypes without genetic or environmental
information. Phenotypes with maximal entropy share no common cause or non-causal
drivers of correlation. Thus, absent environmental variation or phenotypic correlations
that are created by population structure, pairs of phenotypes with less than maximum
entropy share a cause and those causes are, to some degree, epistatic.



Examination of many phenotypes likely provides
information about any one phenotype

Given dependence among phenotypes, examining one phenotype should provide
information about other phenotypes. In other words, conditioning the entropy of one
set of phenotypes, 1, on another phenotype, T;, will reduce the entropy (except in the

case of independence).

Theorem:
H(T|T;) < H(T)
Proof:
I(T;T;) > 0
H H(T|T;) >0

(T) -
H(T) > H(T|T;)
H(T|T;) < H(T)
This shows that, given some correlated structure among traits, examining many
phenotypes will be useful in predicting any one phenotype; something we have
empirically demonstrated in our companion pub [20]. Furthermore, in the same pub
we show that examining increasing numbers of phenotypes doesn’t reduce the
amount of information about any one phenotype. However, we often estimate

information theoretic values using numerical methods and, as a result, there is a limit
to the number of phenotypes it is practical to examine.

Pleiotropy decreases total trait entropy

Pleiotropy is the observation that allelic state at any one genomic location impacts
multiple phenotypes. Intuitively, for any fixed set of phenotypes and genes impacting
those phenotypes, increasing pleiotropy will increase co-variation among phenotypes
and thus decrease the total trait entropy. For traits 77 and T5 and gene GG, we can

define the pleiotropy as



Pleio(Ty, T, G) = I(T1; Ty) — I(T1; T3|G)

This is the amount of information shared between T} and T5 that can be accounted for
if G is known. This is an extension of mutual information to multiple variables, known
as interaction information. Unlike mutual information, interaction information can be
negative. However, if 11, T5, and G form a Markov chain such that 77 and 15 are
independent, conditional on G, then I(T7, T5|G) = 0 and this reduces to I(T1, T5).
With this definition of pleiotropy, we can show that the presence of pleiotropy will
decrease the joint phenotypic entropy.

Theorem:

If 71, T5, and G form a Markov chain such that 77 and T are independent conditional
on G, then increasing pleiotropy will lead to decreased joint trait entropy.

Proof:

Pleio(T1,T5,G) > 0

I(T1; Tz) — I(Ty; T3|G) > 0
I[(T1;T5) >0

H(T}) + H(T) — H(Ty, Ty) > 0
H(Ty) + H(Tz) > H(T1, T3)

where H(T}) + H(T5) is the maximum possible entropy if T7 and T5 are totally
independent and H (77, T3) is the joint entropy of 77 and T5.

In this section, we've shown several ways in which we can apply information theory to
the analysis of multiple phenotypes. First, we showed that the deviation between the
maximal phenotypic entropy and the joint phenotypic entropy provides a quantification
of the relational structure of a set of phenotypes, which may result from shared
causes. Importantly, we can use this to show that some phenotypes are unrelated from
others, a situation that would only result if there was no shared causation among those
phenotypes. Second, we show that increasing the number of phenotypes in an
analysis should increase our understanding of other phenotypes. And finally, we
provide a mathematical definition of pleiotropy and show that increasing pleiotropy
should, in some circumstances, decrease overall phenotypic entropy. While also



demonstrating these findings empirically in a companion pub [20], these formalisms
provide certain guarantees about such analyses.

Key takeaways

We provide formalisms for the analysis of cohorts of phenotypes ("polyphenotypes"”)

using information theory.

Analysis of individual phenotypes will benefit from examining a polyphenotype.

Polyphenotypic analysis does not require genetic or other causal information.

« We can identify sets of phenotypes that are causally independent.

What'’s next?

We've presented a few examples of information theory applied to genetic questions.
We view this as a work in progress and will, along with empirical and numerical studies
in other pubs, expand these ideas into other areas of genetics and genetic analysis as
our work progresses.
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