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Graph neural networks: A
unifying predictive model
architecture for

evolutionary applications

The transition from explanatory to predictive models in evolutionary
biology is a significant and challenging task. We propose that graph
representations and graph neural networks may play a crucial role in
this transition.
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Purpose

Neural networks are increasingly used in evolutionary biology research. Despite this
burgeoning interest, most work uses just a few model architectures. This bias matters:
the alignment of data structure, task, and architecture influences predictive and

explanatory outcomes.

We propose that graph neural networks (GNNs), a comparatively underutilized
architecture, are uniquely well-suited for evolutionary applications. We detail how
GNNs leverage relational structures embedded in evolutionary data where other
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architectures can’t. We review example applications and discuss promising avenues
where GNNSs could advance evolutionary research. Our goal is to highlight the value of
GNNs and encourage other evolutionary biologists to leverage the full extent of their

utility.

. All associated code and data are available in this GitHub repository.

Explanatory vs. predictive models in
evolution

Evolutionary biologists are driven to answer fundamental questions about how the
world works. What led to the adaptive radiation of Darwin’s finches [1]? What facilitated
the repeated speciation and parallel ecological divergence between limnetic and
benthic freshwater threespine sticklebacks [2]? Does epistasis increase or decrease
phenotypic diversity [3]? Evolution is, historically speaking, the domain of explanatory

rather than predictive models.

For example, when studying macroevolution, it's common to interpret real data by
fitting idealized models of evolution (e.g., Brownian motion (BM) or Ornstein-Uhlenbeck
(OU) [4]) to them. Doing so has helped advance our understanding of a number of
phenomena, such as resolving how species diversification along ecological gradients
can underlie adaptive radiations (e.g., Anolis lizards [5]). However, the features driving
these models’ explanatory power also restrict their predictive utility.

Though providing valuable biological insight, explanatory model design inherently
limits their ability to predict unobserved or future outcomes. This mismatch between
model intention and application isn't a shortcoming per se — these models were never
intended to enable accurate prediction. It does mean, however, that when explanatory
models are applied to predictive tasks, they rely on overly simplistic assumptions that
maintain interpretability yet harm predictive capabilities. This issue isn't unique to
evolutionary biology (for discussions, see [6] & [7]). For instance, phylogenetic
imputation methods use explanatory models like BM or OU to predict missing trait
values, constrained by assumptions such as constant rates of trait evolution across
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lineages and through time [8]. Dedicated predictive modeling frameworks tailored to
evolutionary biology are needed.

Accordingly, evolutionary biologists have increasingly turned to machine learning
frameworks more amenable to predictive tasks, particularly neural networks (NNs)
(Figure 1, A-B) [9][10][11]. By leveraging multiple interconnected layers of artificial
neurons, NNs can learn complex, non-intuitive relationships within data [12][13].
Despite challenges to interpretability, NNs' predictive capabilities make them highly
valuable statistical tools, especially given the intricate and subtle patterns often

present in biological data.

Convolutional neural networks (CNNs: Figure 1, C-D) have become the dominant
architecture used in evolutionary biology. CNNs specialize in grid-structured data,
such as images and sequences, leveraging spatial autocorrelation through
convolutional kernels. Somewhat famously, CNNs have been shown to be
“unreasonably effective” for population genetics inference, matching or exceeding
existing explanatory models [14].

However, only some biological data are structured appropriately for CNNs, and
restructuring comes with trade-offs. For example, genetic data are often converted
into 2D "images" despite biologically irrelevant structuring in one input dimension,
potentially limiting predictive accuracy and efficiency. Data preprocessing such as this
can have an outsized impact on CNN performance [15]. While 1D CNNs offer a more
natural and appropriate fit for linear genomic data — and have been successfully
applied across a range of population genetic tasks — both 1D and 2D CNNs require
input to conform to a regular grid. This requirement restricts possible applications
since biological systems are often better represented as irregular non-Euclidean
relational structures. Thus, although effective in some cases, the widespread use of
CNNs may reflect convenience and historical precedent as much as innate
architectural suitability.
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Trends in the use of neural networks (NNs) in ecology and evolution (data

from [9]) through 2021.

(A-B) Count of publications using each architecture type, considering all data

types.

(C-D) Count of publications using each architecture type, considering only

studies using molecular data.

In all panels, any publication that used more than one architecture type is
counted once per architecture. DNN: deep neural network, CNN: convolutional



neural network, RNN: recurrent neural network, VAE: variational auto-encoder,
GAN: generative adversarial network.

NOTE: The trends shown here are meant to be exemplars — we have not

extended this literature review to the present day.

So, is there a model architecture better suited for evolutionary data? This is an
important question. Model architectures often act like Bayesian priors, each with
unigue inductive biases. Architectures can impose constraints on what models expect
to see and, ultimately, what and how they learn. Effective alignment can simplify the
learning task and improve predictive performance, particularly in small datasets
common in biology. CNNs have succeeded in population genetic applications
because genetic autocorrelation is amenable to convolution. But is there an alternative
architecture better suited to the relational structures that evolution produces?

Evolution: It’s graphs on graphs

We think the answer may be graphs. From phylogenies (bifurcating graphs) to
ancestral recombination graphs (ARGs) to interaction networks and genotypic fitness
landscapes, a vast swath of biology can be meaningfully represented as graphs.
Moreover, graphs may provide the key to spanning from microevolution to
macroevolution by drawing connections between biological scales. This puts on the
table the possibility of a universal evolutionary representation, from proteins to genes
and species, even ecological communities, each represented as hierarchically nested
graphs (Eigure 2).
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Figure 2

Graphs are a unifying biological data structure across scales, from
macroevolution to microevolution.

(Top) Species trees (phylogenies) are fully bifurcating graphs that represent the
relationships among extant species (terminal nodes) and their common
ancestors (internal nodes) through descent with modification.

(Middle) A gene family tree — structured similarly — depicts the relationships
among homologous gene copies possessed by the same species as in the
species tree.

(Bottom) Proteins encoded by each homologous gene copy (and their common
ancestors) in this gene family can be meaningfully and richly represented as
protein residue graphs, where nodes correspond to amino acids, and edges



correspond to interacting or spatially proximal residues, capturing detailed
structural and physicochemical information.

Why is this the case? Because evolution through descent with modification induces a
graph-like relational structure in biological data. We often represent these
relationships as phylogenetic trees wherein each species or gene corresponds to a
node interconnected through edges representing common ancestry. Ultimately, a
phylogeny is inherently a regular, fully bifurcating graph. Similarly, genetic structures
such as ARGs explicitly capture the complex histories of genomic segments across
populations and recombination events [16]. Furthermore, ecological networks
depicting species interactions like predation, mutualism, competition, or gene
regulatory networks depicting complex genetic pathways are also naturally expressed
as graphs. This ubiquity underscores graph representations' inherent suitability and
explanatory power for evolutionary and ecological questions.

Given the inherent suitability of graph structures to address questions in ecology and
evolution, we're thus prompted to ask: Is there a predictive model architecture capable
not only of handling such non-Euclidean, graph-structured data but also managing —
and even exploiting — the complex nested hierarchical structures induced by
evolutionary processes? After all, it’s previously been shown that CNN architectures
aligned to image data markedly outperform non-convolutional NNs [17][18], and
architectures specialized for non-Euclidean data lead to improved outcomes by
inherently respecting the data’s geometry [19]. Could leveraging graph-based
approaches thus bridge explanatory and predictive paradigms, harnessing the
inherent relational structure of evolutionary data to improve both biological
understanding and predictive accuracy?

Introducing graph neural networks

Yes! The solution we propose lies in graph neural networks (GNNs: [20]). Graph neural
networks are exactly what they sound like — a neural network architecture specifically
designed to process and learn from graph-structured data comprising nodes
(individual entities or observations) and edges (Box 1). GNNs can be used for a variety
of prediction tasks: node regression/classification (e.g., variant effect prediction), edge
prediction (e.g., phylogenetic inference), and graph regression/classification (e.g.,



gene-regulatory network functional classification). Given that graph-structured data is
abundant in biology, the potential of GNNs is vast.

Why might GNNs work so well? For one, all GNNs use message passing to aggregate
information from neighboring nodes along edges, thus allowing the model to learn
complex local relationships in the data in a manner explicitly informed by graph
structure [21]. In effect, this assumes that nodes that are closer to and more
connected to one another in a graph are more similar to each other. Why might we
care about this as evolutionary biologists?

Because this message-passing mechanism functionally leverages something that's
both the bane and boon of any evolutionary comparative study — evolutionary non-
independence. Descent with modification renders biological samples statistically non-
independent "evolutionary pseudoreplicates," as demonstrated compellingly in
Felsenstein's seminal 1985 publication "Phylogenies and the Comparative Method"
[22]. Thankfully, there now exists a wealth of statistical methods based on explanatory
models that explicitly use the inferred phylogeny to account for evolutionary non-
independence [4]. Just as accounting for evolutionary non-independence is essential
to the adequacy and performance of explanatory models, so will it be for predictive
models. In fact, we're likely to push these models even further by explicitly making the
model aware of that evolutionary non-independence by baking it into the model

architecture and data representation. GNNs provide us with the key to do so.

GNNs are also exceptionally flexible. For example, message-passing can incorporate
convolution (as in graph convolutional networks; GCNs [23]) or attention mechanisms
(as in graph attention networks; GATs [24]) to more fully learn complex relationships
present in the data at both local and global scales. Furthermore, many common neural
architectures are special cases of GNNs: CNNs are a special case of GCNs on regular
grids, RNNs are a special case of GNNs on sequential chain graphs, and transformers
[25] are a special case of GATs with fully connected attention graphs.

Thus, while CNNs have been undeniably useful — particularly in population genetic
contexts with spatially or sequentially structured (i.e., Euclidean) genomic data — GNNs
offer even broader flexibility. This flexibility is reassuring. Biological data frequently
exhibit relational complexity beyond simple adjacency or grid-like structures. GNNs
inherently accommodate these complexities, making them highly versatile tools. In the
following section, we discuss several applications that have been particularly fruitful
and propose a couple of promising future applications.



Box 1. Useful GNN terminology.

GNNs are suited to multiple different levels of prediction tasks, ranging from
node classification to link prediction, community detection/graph clustering,
graph classification/regression, graph generation, and more. For a more detailed
review of the architecture, please see [20].

Graphs are constructed from an adjacency matrix and may either be
undirected, meaning information may flow in either direction along an edge, or
directed, meaning information flows only in one direction.

Graphs may be either homogeneous, meaning all nodes and edges are of the
same type, or heterogeneous, meaning multiple types of nodes or edges may
be represented in a single graph.

Nodes in a graph correspond to individual entities within a graph. They may be
represented by a set of node features and belong to one or more classes —
these could be anything from distinct species to genes, proteins, or amino acids.

Edges may be similarly characterized by edge attributes, representing
branches in a phylogeny, orthologous relationships, or physical distances among
atoms in a protein structure.

Graph-level attributes characterize properties of the graph as a whole, such as
the identity of a given gene family, biological process, or protein activity.

Message passing [21] is the mechanism all GNNs use to aggregate information
from each node's immediate neighbors to update node feature representations
(i.e., a local neighborhood aggregation function).

Graph convolution [23] extends the convolution mechanism implemented in
CNNs to non-Euclidean graph data.

Graph attention [24] leverages self-attention to allow the contribution of each
node's neighbors to feature updates to vary, scaling according to their learned
importance.

Transformers [25] are a special case of attention-based GNNs wherein global,
multi-headed attention forms a fully connected graph, thus creating a global



neighborhood aggregation function.

GNNs in practice

Population genetic inference

As discussed previously, an early application of neural networks to evolution was the
use of CNNs for population genetics. How do GNNs stack up here? Recent work [26]
has found that a GCN matches and often exceeds CNN performance on population
genetic tasks, particularly at identifying genomic regions under selective sweeps.
Notably, the GCN achieves this performance with nearly two orders of magnitude fewer
parameters than the CNN (~200 thousand parameters compared to ~21 million). This
disconnect between model size and performance supports our earlier suspicion: that
using an architecture aligned with the data structure indeed helps to learn more, and
from less.

What about GNNs makes them suited for these tasks? The data used here — tree
sequences — are highly efficient representations of genomic data that capture the
changing evolutionary relationships among samples while walking along the genome
[27]. These tree sequences approximate ARGs, complex graph structures capturing
recombination and coalescent histories [16]. The message-passing framework
inherent to GNNs allows for adaptive weighting of neighbors, enabling them to
selectively integrate relevant local signals such as lineage-specific demographic
events or recombination hotspots that are otherwise obscured by fixed receptive fields
in CNNs. Indeed, recent studies have applied GNNs directly to ARGs, proving helpful in
estimating demographic histories and identifying regions subject to selection under
complex population scenarios [28].

Thus, using evolutionarily meaningful, graph-structured data, GNNs can infer
everything from demographic history to the genomic landscape of natural selection
and introgression/horizontal gene flow. While CNNs remain useful for specific
structured genomic data tasks, the flexibility and general applicability of GNNs
position them as a potentially superior choice across a broader range of population
genetic and evolutionary biology problems. Despite these initially promising
demonstrations, we emphasize that we have only begun to scratch the surface of

GNN's potential for population genetic problems.



Diversification dynamics

GNNs may also be helpful for the inference of diversification dynamics using
phylogenetic trees (e.g., for understanding speciation/extinction or mapping pathogen
transmission dynamics [29][30][31]). Historically, this work has disproportionately
relied upon birth-death (BD) and coalescent models. Both model types are highly
interpretable. For instance, BD models employ just two primary parameters: birth (A),
corresponding either to speciation or transmission events, and death (u),
corresponding either to extinction or loss of infected individuals, respectively.

The interpretability of these models has had immense practical value. During the
COVID-19 pandemic, BD and coalescent models applied to SARS-CoV-2 phylogenies
provided early and critical insights into the epidemiology of this novel infectious
disease, directly informing public health decisions [32][33][34][35]. Beyond COVID-
19, the application of these models has long been a critical component of coordinated
responses to infectious disease outbreaks [36]. For example, they've historically been
instrumental in identifying emerging seasonal influenza strains around which vaccines
are developed and assessing vaccine efficacy (e.g., [37]).

So, how can GNNs propel the field forward? Phylodynamics is a field where many
explanatory models have been useful for prediction tasks almost by coincidence. We
can move beyond this, however. For instance, GNNs could explicitly leverage the
temporal structure of pathogen phylogenies to simultaneously model shifts in
transmission dynamics and predict the emergence of epidemiologically important

variants, something traditionally challenging for simpler models.

Initial applications of GNNs to phylodynamic problems have demonstrated substantial
promise, notably in classifying transmission clusters [38][39]. However, there are
several immediate areas where GNNs could be refined for this application, such as
comprehensive epidemiological parameter estimation. Interestingly, a comparative
study evaluating macroevolutionary diversification parameter estimates (speciation
and extinction) noted that other neural network architectures often outperformed
GNNs [40]. However, these GNNs lacked features that improve performance, such as
skip connections or attention-based graph convolutional layers. Thus, given the
inherent flexibility of GNN implementations, a more comprehensive exploration of
possibilities will be of interest here (as elsewhere).



Phylogenetic imputation and ancestral state
reconstruction

Finally, GNNs may be uniquely well-suited to common tasks in comparative biology,
such as trait imputation and ancestral state reconstructions. For example, ancestral
state reconstruction is one of the most common use cases of phylogenetic
comparative methods in evolutionary studies. Writ large, this includes the inference of
everything from geographic ranges [41] and quantitative or discrete phenotypes [42]
to even protein sequences [43] of the common ancestors of extant species.

Many of these tasks are built on a common methodological approach we stereotype
here (for a review, see [44]). First, an explanatory model of how a trait has evolved is fit
to a reconstructed phylogeny and trait data for a set of species. The fitted model is
then used to probabilistically reconstruct trait values at the internal (ancestral
reconstruction) or terminal (phylogenetic imputation) nodes, returning the most likely
values based on the model parameters. Although intuitive, this approach can lead to
biased or incorrect trait estimates, as commonly used models make unrealistic
assumptions, such as constant evolutionary rates through time and shared rates
across species.

GNNs, on the other hand, have the potential to model more realistic evolutionary
scenarios. For instance, using a combination of graph convolution and graph attention,
GNNs may be capable of flexibly and accurately modeling the underlying
heterogeneity of evolutionary rates. Additionally, if modeling the evolution of multiple
traits, GNNs may be able to capture additional complexity and nuance in patterns of
correlated trait evolution that are typically out of reach of standard models. Last,
mechanisms like jumping knowledge [45] may help GNNs to flexibly integrate
information from both local and global phylogenetic neighborhoods to model and
learn where saltational jumps in trait evolution occur. Fortunately, sophisticated
simulation tools are readily available, enabling researchers to create realistic
evolutionary scenarios for effective GNN training (e.g., [46][47][48][49]). Thus, while
simulation quality remains essential, GNNs are an optimally structured architecture to
handle these predictive tasks efficiently and accurately.



Tip of the iceberg

We have only begun to scratch the surface of the potential utility of GNNs for
application to questions and subjects in evolutionary biology. Entire publications could
be written about each. From the potential of GNNSs to directly infer phylogenetic trees
themselves (e.g., [50]) from genetic sequence data to predicting protein-protein
interactions (e.g., [51]) and facilitating the inference of orthology at deep evolutionary
time scales, the number and diversity of prospective use cases are vast. Excitingly, in
many cases, we're beginning to see this exploration unfold, though we emphasize that
it's just that — only the beginning. Ultimately, the creativity of implementation and
thoughtful application, more than innate architectural limitations, will likely determine
the success of GNNs in evolutionary biology.

Although outside of the scope of this pub, we encourage readers to familiarize
themselves more with the technical details of how GNNs are implemented and how
different individual architectural components may play key roles in their success and
performance for any given application [20]. For instance, just as we've seen with the
rampant success of the transformer architecture [25] in the context of large language
models, it seems incredibly likely that GNN architectures that incorporate some form
of attention mechanism will be vitally important to capture the complexity inherent to
biological data. Furthermore, we emphasize that models needn't rely on a single
architectural type. For instance, one recent study successfully combined protein
language models with GNNs to enable the prediction of essential genes in metazoans
[52].

In many cases, the primary utility of GNNs may be in bridging across architectures —
explicitly building in the hierarchical relationships induced by evolution through
descent with modification (e.g., Figure 2). Building sophisticated, complex hierarchical

models such as these spanning biological scales is undoubtedly challenging, but
GNNs present an explicit means by which to do so (e.g., [53][54]). Still, the value
gained from more completely building in the evolutionary structure we know to exist in
our models may be transformative. Ultimately, the boundary to GNN success in
evolutionary biology lies primarily in our creativity and ingenuity in leveraging this
powerful architecture.



Methods

We downloaded the supplementary table from Borowiec et al., 2022 [9] (found here)
and converted it to a tab-separated text file. We loaded these data into R (v4.3.3),
processed them, and visualized outputs with the following packages: readr (v2.1.5),
dplyr (v1.1.4), tidyr (v1.3.1), stringr (v1.5.1), ggplot2 (v3.5.1) [65], reshape2 [56] (v1.4.4),
cowplot (v1.1.3), and arcadiathemeR (v0.1.0) [57]. We excluded publications for which
the entry for Architecture (i.e., the NN architecture used in the study) was “NA,” as
these corresponded to review articles, as well as studies for which the architecture
was "unknown." We counted each type once when multiple architecture types were
used in a single study. For example, if a study used both a convolutional neural network
and a recurrent neural network, we incremented the count for both architectures by
one for that year.

We used ChatGPT to help write code and provide suggestions to restructure writing.

Code and data are available in our GitHub repo (DOI: 10.5281/zenodo.15693531).
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