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An interactive
visualization tool for
Amblyomma americanum
differential expression
data

We analyzed RNA-seq data from Amblyomma americanum to explore
gene expression linked to skin manipulation during tick feeding. We
built an interactive app to explore the differential expression results
and find patterns related to tick sex, tissue, and time in blood meal.
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Purpose

Ticks have evolved to feed on host blood undetected. Female ticks take long “blood
meals” that can last over a week. These ticks use molecules in their saliva to
manipulate host pathways and evade the immune system. Some of these molecules
may have therapeutic benefits for humans, particularly in managing itch and
inflammation. These molecules are likely produced in the female tick salivary glands,
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potentially at higher levels than in males or other tissues. Investigating differential
gene expression could help identify anti-itch or anti-inflammatory molecules.

We re-analyzed public RNA-seq data from A. americanum ticks, focusing on variables
such as sex, tissue type, and feeding time. Though batch effects and a lack of
replicates limited the number of samples we could analyze, we were able to compare
20 of 56 RNA-seq samples using two differential expression models. The first model
compared different tissues within and between sexes, while the second also included
time since the start of a blood meal. We developed an interactive application to

explore the results, aiming to identify tick molecules that manipulate skin pathways.

Our primary audience is researchers interested in identifying new therapeutic proteins
or molecules in female tick salivary glands. We envision these researchers using this
tool as a complement to other genetic or molecular discovery approaches. For
example, a researcher who's identified protease inhibitor genes in the A. americanum
genome could narrow this list down to those most likely to interact with the host by

using the app to identify which protease inhibitors are expressed in the salivary gland.

« This pub is part of the project, “Ticks as treasure troves: Molecular discovery in new

organisms.” Visit the project narrative for more background and context.

- You can find code for the creation of the differential expression models and for the

Shiny app, along with usage instructions, in this GitHub repo.

The context

Ticks (order Ixodida) are parasitic insects that feed on the blood of animals. There are
over 800 recognized species of ticks on the planet [1]. Ticks have evolved many ways
to evade host detection during a blood meal [2]. The blood meal can last up to a week
in hard-bodied, slow-feeding ticks. Only females participate in these long blood meals
— males may feed intermittently from a host but primarily seek out hosts to mate with
females [3].

Prolonged female feeding requires many adaptations for the tick to remain attached to
the host undetected and to maintain blood flow throughout the meal. These include
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strategies to maintain blood supply by overcoming platelet aggregation and blood
coagulation and to hide from the host by blocking itch, pain, and some immune system
activities [2]. Saliva delivers molecules and proteins that achieve these actions.

While ticks use these adaptations to get host blood, we expect that many of the
molecules they use to manipulate host pathways would have therapeutic benefits if we
could co-opt them for use in humans. At Arcadia, we're particularly interested in
molecules or proteins that manipulate skin pathways involved in itch and inflammation.
Examples of tick saliva molecules that manipulate skin pathways include votucalis,
which sequesters histamine to attenuate itch [4], evasin PO91_AMBCA, which binds to
inflammation-causing chemokines [5], and a carboxypeptidase that cleaves the
vasodilator and pain-inducing peptide bradykinin [6].

We expect the salivary glands of female ticks to express the most proteins with
potential therapeutic activities. These organs produce saliva, which is secreted at the
feeding site and manipulates the biology of the host. Given that the biology of tick
feeding varies during feeding [3][7] — manipulating distinct biological pathways at
different points — the temporal expression of a gene may offer insights into its
functional role. Similarly, for candidate proteins of therapeutic interest, understanding
a gene’s expression pattern can guide us in determining the optimal time to harvest
tick tissues if this is relevant to the experiment.

Taken together, gene expression in female tick salivary glands may offer clues for
uncovering the molecules that manipulate human skin pathways.

What expression data do we have to work with

The relative affordability of next-generation sequencing combined with publishing
mandates for open data have produced an abundance of public sequencing data. RNA
sequencing in particular is a popular modality in part because it does not require a
reference genome to gain insight into an organism’s gene expression. While RNA-seq
data is often generated to answer specific research questions, the comprehensive
nature of the data means it can be reanalyzed or repurposed to investigate other
biological questions beyond the scope of the original research. This makes RNA-seq
data valuable and reusable for different studies. At the same time, RNA-seq data often
have strong batch effects (non-biological dataset-to-dataset variation) from things like
sample handling, RNA extraction protocol or kit, sequencer, and genomic



heterozygosity of a species [8]. No matter their source, major batch effects prevent
comparison between samples. Biological replicates (minimum two) and balanced
experimental designs are also hecessary to compare many samples with differential
expression. For example, we have to discard some samples if a condition doesn’t have
a replicate or we don’t have a mirrored condition sample to compare it to (e.g., male vs.
female).

RNA-seq experiments have been popular in Amblyomma americanum, the lone star
tick [9I[10][111[12]. A. americanum has a range that covers most of the Eastern United
States and is in part responsible for the doubling of tick-borne diseases from 2004-
2016 [13][14][15]. Given the potential importance of tick saliva in the transmission of
tick-borne pathogens and its role in the development of alpha-gal syndrome, many of
these RNA-seq studies include samples from female salivary glands as well as other
tissues, such as the mid-gut and samples from male ticks. Contrasting these samples
may highlight gene expression profiles specific to female salivary glands and uncover
key mechanisms of host manipulation. However, batch effects may prevent unified
analysis because these samples originated from different studies. This is particularly
true for A. americanum, which has high genetic diversity that clusters by population

[16].

We wanted to assess whether we could use public data to investigate the genes A.
americanum expresses when interacting with a host. Focusing on variables such as
sex, tissue type, and time during the blood meal, our goal was to develop differential
expression models with DESeqg2. Differential expression models make statistical
comparisons between normalized gene counts to determine which genes are induced
or repressed in different conditions. These models may help us identify specific tick
molecules expressed in the salivary glands of females, which likely manipulate host
skin pathways at different feeding stages [3][7], providing insights into tick biology and
host manipulation.

Our approach to visualizing tick differential
expression

We re-analyzed public RNA-seq data from A. americanum for differential expression
analysis. We identified samples that clustered according to biological variables rather

than the originating study. These samples allowed us to perform differential expression



modeling based on variables like sex, tissue, and time in blood meal (the number of
hours the sample was taken after feeding began). We then developed an interactive R
Shiny app to make it easy to explore these results. The application includes key RNA-
seq analyses and visualizations like principal component analysis plots, volcano plots,
MA plots (log ratio mean average plots), and gene plots, as well as tools to summarize
gene expression by condition. Users can control differential expression results by
metrics like log, fold change, p-value, or average gene count per gene.

The resource

You can find code for the creation of the differential expression models and for
the Shiny app, along with usage instructions, in this GitHub repo (DOI:
10.5281/zen0do.14548891).

Building differential expression models

Finding samples

We started our analysis by identifying publicly available lllumina RNA-seq samples.
Using the NCBI Taxonomy page, we searched for “Amblyomma americanum” in
August 2023 and followed the Entrez records link to SRA Experiments. We then used

the SRA filtering tools to limit the results to RNA-seq sequencing data from Illlumina
sequencing chemistries: txid6943[0rganism:noexp] AND "biomol rna"[Properties]
AND "platform illumina"[Properties] AND "strategy RNA-Seq"[All Fields].A
summary of the samples is included in Table 1.
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Number of samples
Number | included in

SRA study accession of | differential Reference
samples | expression
analysis
SRP051699 4 | 4 7]
SRP091404 6 | 2(replicates) [12]

SRP052078; SRP052097;

SRP052108; SRP052106; Arthropod
SRP052114: SRPO52123; 8 | O(batch effects) cell line
SRP052145; SRPO52154

SRP032795 14 | 14 [10]
SRP446981 24 | O (batch effects) [9]

Table 1

Summary of publicly available RNA-seq data analyzed in this project.

In cases where we had to omit samples from our analysis, we've noted the

reason for omission in parentheses in the third column.

View the complete set of samples and metadata analyzed in this project.

Creating gene counts

We next processed these RNA-seq samples into gene counts.

We first downloaded reads with SRA Tools (version 3.0.6) fasterq-dump and quality-
and adapter-trimmed reads with fastp (version 0.23.4) [17].

We quantified transcripts using Salmon (version 1.10.2) [18] against an A.
americanum transcriptome assembly

(“Amblyomma_americanum_transcriptome_assembly_data.tar.gz”) [19] to quantify read
counts.

While Salmon produces transcript (isoform) counts, differential expression results are
more accurate when comparing gene counts [20]. The most common way to assign
transcript isoform-level counts to their parent genes is to use a transcript-to-gene
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mapping file. The R package tximport uses a tx2gene file to sum the counts for all
transcripts that encode the same gene and to report the gene-level counts [20].

To generate a transcript-to-gene map ( tx2gene file) for gene-level quantification, we
first mapped the reference transcripts back to the genome using uLTRA (version
0.) [21].

Next, we assigned a gene name to a transcript when it overlapped with part of
the gene’s interval as annotated in the A. americanum genome annotation GFF3

(“Amblyomma_americanum_annotation_data.tar.gz”) [19]. After making these files, we
imported transcript counts and summarized them to gene counts using the tximport
package (version 1.28.0) function tximport() with the parameter type = salmon
[20].

View the workflow code for creating gene counts from RNA-seq accessions on
GitHub.

Picking samples to include in the differential
expression analysis

We next assessed which samples we could compare via differential expression
analysis. Using the gene counts generated above, we assessed similarities between
samples as well as conditions captured in the metadata. Our exclusion criteria
included samples without replicates (minimum of n = 2 per condition) and batch
effects that led to samples clustering more strongly by study than by condition (as
determined by eye).

We first eliminated four samples from study SRP091404 [12]. This study investigated
changes to the transcriptome of A. americanum during infection with Ehrlichia
chaffeensis [12], a tick-borne pathogen primarily transmitted by A. americanum [22].
Two of the six samples captured whole, uninfected ticks while the other four captured
infected ticks. Since no RNA-seq samples in other studies were exposed to this
pathogen, we could not account for infection with E. chaffeensis as a variable in a
differential expression model, so we eliminated these four samples. Further, these
samples didn't have replicates within the study, which also prevented analysis by

differential expression.
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We next used principal component analysis to determine if batch effects led to

samples clustering more by study than by biological condition (Figure 1). This analysis

excluded 32 samples from two studies (SRP446981 and “Arthropod cell line”).

We eliminated all 24 samples from
SRP446981[9]. This study analyzed
the transcriptome response of A.
americanum to Escherichia coli
challenge. Initially used for differential
expression analysis, it featured unfed
female ticks injected with either
phosphate-buffered saline or E. coli
and analyzed whole (i.e., sampling all
tissues). All samples from the study
clustered tightly together and away
from whole-tick samples from other
studies, indicating the batch effects
were too strong to make cross-study
comparisons. It’s possible that the
injections caused a biological impact
that led to these batch effects, but we
can’t evaluate this with the available
data.

Last, we eliminated eight samples
from the “Arthropod cell line”

sequencing effort. These eight

samples originate from two A.
americanum cell lines. The samples
all cluster tightly together and away
from other samples. Since we have no
other cell line data from other studies,
there’s no way to evaluate whether
these samples cluster alone because
they have different expression or
strong batch effects.

Y 20 :
2 N
[} L}
g o ‘ s
X
~
& -20
(6]
a
_49 a ‘ T T T T
-40 %] 40 80
PC1: 76% variance
Study accession Tissue
W Arthropod cell line Cell line
[ SRPB32795 Midgut
W SRPB851699 Salivary gland
SRP891404 Whole

I SRP446981

Figure 1

Principal component analysis of
normalized gene counts for the
top 500 genes by variance across
RNA-seq samples.

Sample color corresponds to the
original study that published the
RNA-seq data (see Table 1) while
sample shape corresponds to the
type of tick tissue from which the
sample originated. “Arthropod cell
line” and SRP446981 data group by
study accession instead of by tissue
type, while other samples group by
tissue type. PC: Principal component.
The percentage of the variance
explained by PC1and PC2 is reported
in each axis label.
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Building the differential expression models

After filtering the data, samples from different tissues, sexes, and taken at different
times during a blood meal remained. We next performed a differential expression
analysis so we could compare these samples. We built differential expression models
using the DESeq2 package (version 1.40.2) using commands

DESegDataSetFromTximport() and DESeq() [23]. We experimented with different
model structures using the design parameter to maximize the number of samples
and conditions that we could compare. In the end, we were able to optimize these two
factors with two models. In both cases, we combined the variables we included in the
model. In DESeq2 analysis, the model matrix must be "full rank" to prevent variables
from being redundant, which can skew the results. We simplified the model by
combining variables, ensuring each variable is distinct. This lets DESeq2 accurately
calculate and attribute effects to each variable independently [23].

We were able to include all samples when we combined the variables “sex” and
“tissue” (Table 2).

Model “sex_tissue” Number of samples

female_x_midgut 3

female_x_salivary_gland 7

female_x_whole 5

male_x_whole 5
Table 2

The variables and number of samples included in the “sex_tissue” model.

The combined variables are separated by an “x.”

While this model included all samples that we could compare, it gives no insight into
how gene expression varies based on time in the blood meal. Given this, we built a
second model that included time in the blood meal (by hour), only including samples

with replicates for different times in the blood meal (Table 3).



Model “sex_tissue_blood_meal_hour” | Number of samples

female_x_midgut_x_72_144 2

female_x_salivary_gland_x_12_48 2

female_x_salivary_gland_x_72_144 3

female_x_whole_x_72_144 2

male_x_whole_x_72_144 3
Table 3

The variables and number of samples included in the

“sex_tissue_blood_meal_hour” model.

The combined variables are separated by an “x.” The humbers in the condition
names indicate the range of hours in the blood meal from which samples were
taken.

In general, it’s better to analyze all samples in a single model, but given the limitations
of working with this data, we worked within the bounds of what was statistically
possible in order to achieve the most biological insight.

We don’t present detailed results here as they change based on filtering and the
specific conditions compared. However, we include a summary of the number of
differentially expressed genes using default filters (log, fold change = 2, false
discovery rate = 0.05, base mean count = 10), focused on differential expression in
female salivary glands (Table 4). We observed expected ranges of expression and
genes with larger expression differences across more distinct conditions, giving us

confidence that our models are useful.



Condition1 Condition 2 Induced | Repressed

Female salivary gland Female midgut 183 358
Female salivary gland Female whole tick 240 631
Female salivary gland Male whole tick 256 946
Female salivary gland, 72- Female salivary gland, 5 1
144 h 12-48 h
Female salivary gland, 72- Female whole tick, 72-
144 h 144 h 12 48
Female salivary gland, 72- | ;.16 whole tick, 72-144 h 31 190
144 h

Table 4

The number of differentially expressed genes in female salivary glands
when compared to different conditions.

The first three contrasts are from the “sex_tissue” model while the last three are
from the “sex_tissue_blood_meal_hour” model. Induced

and repressed genes have positive and negative log, fold changes, respectively.
Only genes with a base mean count greater than 10 and a false discovery rate
less than 0.05 are included.

Interactive application for exploring gene
expressionin A. americanum

We built the above differential expression models to facilitate insights into A.
americanum gene expression. We included the maximum number of variables and
conditions possible given what is available in public data. However, we wanted to let
others explore these results with different biological questions in mind. For example,
researchers could use our data to identify the conditions under which their gene of
interest is most highly expressed. Likewise, it could be used to evaluate whether a
gene of interest exhibits stronger sex-associated or time-associated effects. These
individual biological applications would be difficult to anticipate and share in written
pub format. To give researchers flexible access to this data, we wrote an interactive



Shiny app to explore the gene count and differential expression results. Instructions
for using the app are available on the GitHub repository along with a mapping table

(shiny/mapped_gene_names_GCA_030143305.2.csv) that enables conversion of

GenBank protein IDs from the A. americanum assembly to the gene names used in the
app.

The application features several analytical tools separated into different tabs. Users
first select which model they want to explore (Figure 2). They can then visualize the
samples in the model in a metadata table and a principal component analysis plot
colored by variables from the model (Figure 2). The “Differential Expression (DE)
Analysis” tab offers filtering capabilities based on log, fold change, p-value, and mean
count of the gene, supporting detailed comparisons across different conditions
(Figure 2). Users can also upload their data in this tab to highlight whether specific
genes of interest are differentially expressed.
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Figure 2

Preview of the “Differential Expression Explorer” for Amblyomma

americanum.

The Shiny app allows users to explore two differential expression models: one
built on the variables sex and tissue and one built on the additional variable time
since blood meal started. Users can toggle between the two models using a
drop-down menu. Four tabs present different information from these models.
The first, “PCA Plot,” gives an overview of the samples included in each model
using a principal component analysis and a metadata table with information
about each sample. The second tab, “DE Analysis,” includes the differential
expression analysis capabilities and visualizations. Users can select which
conditions to contrast and thresholds for filtering results. The differentially
expressed genes are then plotted in interactive plots. The third tab, “Gene,”
allows users to visualize normalized counts per gene. These plots are helpful to
determine if a few outlier samples drive differential expression of a gene of
interest. The last tab, “Expression by Condition,” allows users to see which genes
are expressed in each condition. The toggle on this tab allows users to highlight
genes that have higher relative expression.

The application includes functionality for gene-specific inquiries where users can input
a gene name to generate a boxplot displaying expression across different conditions,
offering a granular view of gene activity (Figure 2). Furthermore, the “Expression by



Condition” tab provides a table that reports gene expression thresholds and
percentiles, allowing users to filter and download gene expression data (Figure 2). This
tab is particularly useful for identifying genes that are consistently or exclusively

expressed in specific tissues like salivary glands.

Currently, the transcript and gene names used in our pipeline are the bespoke
annotations assigned by intermediate tools in different pipelines. However, GenBank
recently accepted our genome gene-boundary annotations [19]. Given this, we have

also provided a mapping table that can be used to map NCBI protein identifiers to the
names used in our app. The mapping table is available in the GitHub repository.

Additional methods

We used ChatGPT as a starting point to put our code into a Shiny app and adjusted
ChatGPT'’s outputs. It also suggested wording ideas and edits, and we picked and

chose which bits to use.

We also provided Notion Al with starting text and had it rearrange that text to fit the
structure of one of our pub templates, and then edited that output.

Key takeaways

1. Re-analyzing public RNA-seq data from the tick species Amblyomma americanum
let us construct two distinct models for assessing differential gene expression,
though major batch effects and lack of sufficient replicates limited the number of

samples we could include in our analysis.

2. Our differential expression models let users compare variables like sex (male,
female), tissue type (whole tick, midgut, and salivary gland), and timing in the blood
meal. Users can identify gene expression patterns potentially linked to skin

pathway manipulation by comparing these variables.

3. Our interactive Shiny app provides a user-friendly platform for exploring
differential expression experiments. This application features tools for
visualization and analysis, including principal component analysis, volcano plots,
and gene count plots, and allows for results-filtering based on significance or

expression levels.
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Next steps

We'd like to improve this resource in two specific ways:

1.

Updating the analysis and Shiny app to include A. americanum gene
GenBank identifiers: Currently, the transcript and gene names used in our
pipeline are the bespoke annotations assigned by intermediate tools in different

pipelines. However, GenBank recently accepted our genome-gene boundary

annotations [19]. Given this, we may update the Shiny app to include these
identifiers to make the analysis experience more consistent across public
resources. As a quick fix, we provide a mapping_file that allows a user to

correspond NCBI gene identifiers to our internal gene names.

Adding new RNA-seq samples to the models: In March 2024, the National
Institute of Allergy and Infectious Disease released 21 new RNA-seq samples from

the mid-gut of A. americanum. As more RNA-seq samples are released, or if we

sequence samples ourselves, we could add these new samples to this analysis.
We would have to check new samples for batch effects and assess whether the

current model matrix could include more samples.

If you use our Shiny app, analysis, or any part of our code, we'd love to hear how it

works for you. Any feedback on issues or potential useful features to add is welcome.
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