
Published on Aug 15, 2025 by Arcadia Science DOI: 10.57844/arcadia-zf7s-3264

Automating identification
and quantification of
mouse scratch behavior in
video recordings

Itch is a key symptom of many diseases. Drug development for these

diseases requires assessing itch to determine if potential drugs

work. We developed a workflow to rapidly quantify scratching, a

measure of itch, in a pre-clinical animal model to speed drug

discovery.

Contributors (A-Z)

Audrey Bell, Feridun Mert Celebi, Keith Cheveralls, Seemay Chou, Tori Doran,

Behnom Farboud, Megan L. Hochstrasser, Claire Kwon, Alba Peinado,

Kira E. Poskanzer, MaryClare Rollins, Peter S. Thuy-Boun

Version 3 · Oct 22, 2025

Purpose
We sought to speed drug discovery by building an end-to-end video analysis pipeline

to assess itch in mice treated with itch-inducing substances (pruritogens) and tick

extracts that contain compounds that may alleviate itch. The pipeline leverages

machine learning (ML)-based pose estimation to track mouse scratching behavior and

automation in the cloud to accelerate analysis.

http://localhost:4321/user/audrey-bell
http://localhost:4321/user/feridun-mert-celebi
http://localhost:4321/user/keith-cheveralls
http://localhost:4321/user/seemay-chou
http://localhost:4321/user/tori-doran
http://localhost:4321/user/behnom-farboud
http://localhost:4321/user/megan-l.-hochstrasser
http://localhost:4321/user/claire-kwon
http://localhost:4321/user/alba-peinado
http://localhost:4321/user/kira-e.-poskanzer
http://localhost:4321/user/maryclare-rollins
http://localhost:4321/user/peter-s.-thuy-boun

The strategy

The problem

Itch is a debilitating symptom and driver of numerous diseases that have a devastating

impact on physical and emotional health. Being able to categorize and quantify itch is

necessary to assess disease progression and the efficacy of treatment for itch-

associated diseases. The gold standard for quantifying itch in preclinical translational

models has been human observation and tallying of itch-specific behaviors from video

recordings, specifically pruritogen-induced scratching in mouse models [1].

Mouse scratching has traditionally been quantified through manual annotation of

mouse videos, counting mouse paw swipes across affected areas. This approach has

translated reasonably well to human clinical phenotypes [2], although the process of

manual annotation can be slow and tedious. Given our goal of using behavioral

phenotyping as a guide for our fractionation experiments, we needed ways to speed

up our in vivo analyses.

Our solution

To accelerate our studies on anti-itch compounds, we built a computational pipeline to

automate the steps involved in quantifying mouse scratching (please check out our

This resource might be useful to researchers working on itch, applying ML-based

models to assess other behavioral readouts, or hoping to extract general lessons for

productionizing ML workflows in the cloud.

All associated code is available in this GitHub repository.

Check out our protocol, “A behavioral assay for measuring acute itch in mice,” for

step-by-step instructions to carry out the upstream scratch assay and generate the

videos that feed into this computational pipeline.

https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

Schematic of automated workflow

for the analysis of mouse

scratching.

We uploaded unprocessed video

files and their matching metadata

(TXT) files to AWS, where we

triggered the NextFlow workflow. We

cropped the files to include only one

mouse per video and renamed them

based on the data in the metadata

file (time, date, camera, frame of

capture). We then used DeepLabCut

to track the six body parts, indicated

companion protocol on how to

perform the mouse scratch assay).

Here, we present the workflow and

code we developed. We estimate that

it ultimately sped up our data analysis

by at least 50×. One limitation,

however, is that our pipeline performs

well only on DBA/2J mice, which have

unique coloration patterns. Further

work is necessary to make it

generalizable for all mice.

Others have also developed ML-

based training sets to track and

quantify scratching in rodents [3][4].

While tracking mice using ML-based

algorithms isn't a new tool to aid in

scratch quantification, automating the

different arms of the process in the

cloud was unique and a game-

changer for decreasing our analysis

time between experiments.

We built this pipeline to quantify

scratching in mice, but we recognize

that there are other, less-appreciated,

itch-related behaviors that aren't

categorized as scratching. Since the

pipeline provides positional data for

numerous body parts of the mouse,

we hope others will use it to identify

and track metrics besides scratching

using unbiased ML-based clustering

algorithms.

Figure 1 outlines the pipeline. It

automates video cropping and

cataloging, body position tracking

Figure 1

https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

by the colored circles. We processed

the output pose estimation data from

DLC with a peak-finding script to

identify and quantify episodes of

scratching. The script looks at the

difference in x,y positions between

the two rear hindlimbs to identify the

stereotypical cyclical movement

pattern of the scratching motion.

using DeepLabCut, and scratch

quantification.

The resource

Code, including the NextFlow workflow, packages to preprocess videos and

analyze them with DLC, and the peak-finding scripts, is available in our GitHub

repo (DOI: 10.5281/zenodo.16879067).

In this section, we dive into the details of our automated scratch assay analysis

pipeline. Figure 1 outlines the key steps of the computational analysis.

Preprocessing videos

We treated DBA/2J mice with pruritogens (itch inducers) and captured videos of their

behavior (see our protocol for this assay on protocols.io). Each video captured two

mice. To unambiguously catalog each mouse recording, we subjected videos

containing two mice to automated cropping into two videos containing one mouse

each (Figure 1, top panel). We renamed these videos based on position in the frame

(right vs. left enclosure), capture time, and date. We affixed quick response (QR) codes

just outside each mouse enclosure, and used a script to assign a 900 × 900 pixel

bounding box based on the corner of the QR code to perform the video cropping. Two

boxes defined two regions in the video to crop to generate two separate videos. We

then extracted the video capture time and date from an associated metadata file and

used them to rename the two cropped video files.

https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://doi.org/10.5281/zenodo.16879067
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

Training ML-guided body position tracking

We then employed automated, machine learning-guided body position tracking using

DeepLabCut (v2.2.1, RRID: SCR_021391) [5]. We manually labeled six body parts,

generating a skeleton of the front left paw, front right paw, rear left paw, rear right paw,

nose, and rear of the animal. Some other studies [3] focus exclusively on labeling the

limbs that perform the scratching, but miss out on tracking other possible behaviors

that could be found by tracking many body parts. We performed training on an Intel

Core i9 CPU system and a NVIDIA GeForce RTX 3080-10GB graphics card. We

prepared a training dataset with the ResNet-50 convolutional neural network

backbone [5], using 43 videos with 2,200 total frames, extracting an average of 50

frames per video to label the six body parts manually. We split the dataset 95:5 for

training and testing, respectively. At each iteration of training, we extracted outlier

frames, corrected labeling, and then used them to retrain. Using a confidence

threshold of 0.6, training achieved an average train error of 0.32 mm (1.89 pixels) and

average test error of 1.25 mm (7.39 pixels).

Identifying and quantifying scratching

We then used the pose estimation data to explore the most robust means to quantify

scratching. Scratching in mice involves raising a right or left rear hindlimb to scratch

the affected area [6]. When plotting the change in hindlimb x,y position over time, the

cyclical nature of the scratching motion appears as a distinct oscillating curve

(Figure 1, bottom panel). We empirically determined that the clearest scratching

pattern (the greatest and most consistent difference in x,y positions over time) was

revealed when plotting the difference in the positions of the right and left hindlimbs

during scratching episodes.

We then wrote a Python peak-finding script to automatically identify the itch-

associated cyclical hindlimb displacement pattern noted above. To accurately flag

"waves" of rear hindlimb swipes in displacement-time graphs as scratching events, we

included several key variables in the script (Figure 1, bottom panel):

1. The minimum and maximum prominence of the peak

Peak prominence is a measure of how much a peak stands out from its

https://github.com/Arcadia-Science/trove-deeplabcut/blob/v1.0/bin/peak_finder.py

surroundings by calculating the minimum vertical distance you need to descend

from the apex of a peak before you could climb to an adjacent higher peak.

2. The minimum and maximum width of the peak

3. The maximum frequency of the scratches

4. The minimum number of oscillations of the curve within a given time,

corresponding to the number of scratches across the neck in a time bin

This final metric allowed us to distinguish the repeated pattern of scratching from

just random movement that may appear as less frequent oscillating displacement

of the hindlimb (e.g., rapid walking).

We adjusted these parameters, generated output tables with predicted scratching

events, and compared the predictions to ground-truth video footage and manual

quantification to confirm that the automated calls were correct. After some iteration,

we determined how to adjust the variable settings to call scratching events accurately.

Using this script, we were able to capture the following data (with precision dictated by

the video capture rate of 1/120 of a second):

1. Which limb is performing the scratching

2. Individual hindlimb swipes at the affected area

3. Number of swipes in a bout of scratching

4. Frequency of swipes and frequency of bouts of scratching.

Overall, these measures help capture the dynamics of scratching across the entire

time course of the video.

NextFlow workflow to orchestrate the analysis

pipeline in AWS

With all the different modules of the analysis pipeline complete, we wanted to take

advantage of the parallel processing power available in the cloud to further speed up

the video analysis. We ported the modules to Amazon Web Services (AWS) and built a

workflow using NextFlow to orchestrate the pipeline.

https://github.com/Arcadia-Science/trove-deeplabcut/blob/v1.0/bin/peak_finder.py

The NextFlow workflow is available in our GitHub repo.

Findings and caveats

The outcome of this effort was automation and parallel processing of analysis that

significantly accelerated the quantification of scratching and allowed rapid and nearly

real-time adjustment of experimental parameters for follow-up experiments. Less than

a day after an experiment was complete, we would have the results and could perform

the next experiment.

Direct comparison of manual quantification time to automated quantification is difficult

because a huge efficiency gain came from running the automated analysis in parallel

with many videos. However, a good approximation can be made by comparing the

analysis time for an average single experiment of 48 15-minute videos. Quantifying 48

videos took approximately 36 hours, which generally spanned seven days. With the

automated pipeline, 48 videos could be processed in three hours (~56× faster).

As noted by others [4], ML-based training weights for pose estimation are sensitive to

the specific conditions in the video (lighting, camera resolution, camera angle, frame

rate, etc.). For instance, our pipeline successfully tracks mice with coloration patterns

specific to DBA/2J mice. Re-training and fine-tuning will be necessary to generalize to

other mouse breeds that are visually distinct from DBA/2J mice. Additionally, slight

variations in our experimental setup (described here), may also require re-training.

Additional methods

We used ChatGPT to review our code and selectively incorporated its feedback. We

used Claude to review our code, selectively incorporating its feedback, and to help

clarify and streamline text that we wrote. We also used Grammarly Business to suggest

wording ideas and then chose which small phrases or sentence structure ideas to use.

https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

Key takeaways
In summary, we built a video analysis pipeline to quantify itch in mice treated with itch-

inducing substances and potential anti-itch compounds. Our pipeline significantly

accelerates video analysis and removes the variation inherent in using different human

observers in the same experiment. It also yields more granular data, such as

scratching frequency. Additionally, it provides the framework to use positional data and

non-scratching behavioral information to track other outcomes of experimental

treatments.

Next steps
We’re currently winding down the Trove effort [7], so we won’t continue development of

this resource. For those who may want to use this tool, further work should be done to

generalize ML training to follow mouse strains other than those with DBA/2J coloration

patterns. Further optimization of GPU use in the cloud could also increase efficiency

and decrease the analysis time.

Unsupervised ML-based algorithms [8][9] could also be used with our positional data

to identify emergent behavioral patterns caused by treatment regimes. These

emergent behaviors could provide another metric to follow that may display less

variability mouse-to-mouse than scratching.

Acknowledgments We’d like to thank Allan Basbaum and Juan

Salvatierra for suggestions on mouse recordings

and strategies for generating the training weights

with DLC.

References
Shimada SG, LaMotte RH. (2008). Behavioral differentiation between itch and

pain in mouse. https://doi.org/10.1016/j.pain.2008.08.002

Yassky D, Kim BS. (2024). Mouse Models of Itch.

https://doi.org/10.1016/j.jid.2024.08.018

Wimalasena NK, Milner G, Silva R, Vuong C, Zhang Z, Bautista DM, Woolf CJ.

(2021). Dissecting the precise nature of itch-evoked scratching.

https://doi.org/10.1016/j.neuron.2021.07.020

Yu H, Xiong J, Ye AY, Cranfill SL, Cannonier T, Gautam M, Zhang M, Bilal R, Park J-

E, Xue Y, Polam V, Vujovic Z, Dai D, Ong W, Ip J, Hsieh A, Mimouni N, Lozada A,

Sosale M, Ahn A, Ma M, Ding L, Arsuaga J, Luo W. (2022). Scratch-AID, a deep

learning-based system for automatic detection of mouse scratching behavior

with high accuracy. https://doi.org/10.7554/elife.84042

Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW. (2019). Using

DeepLabCut for 3D markerless pose estimation across species and behaviors.

https://doi.org/10.1038/s41596-019-0176-0

Yamanoi Y, Kittaka H, Tominaga M. (2019). Cheek Injection Model for

Simultaneous Measurement of Pain and Itch-related Behaviors.

https://doi.org/10.3791/58943

Chou S, Farboud B, Rollins M. (2025). Lessons from our approach to

bioprospecting in ticks. https://doi.org/10.57844/arcadia-mv9a-1yx3

Hsu AI, Yttri EA. (2021). B-SOiD, an open-source unsupervised algorithm for

identification and fast prediction of behaviors. https://doi.org/10.1038/s41467-

021-25420-x

Weinreb C, Pearl J, Lin S, Osman MAM, Zhang L, Annapragada S, Conlin E,

Hoffman R, Makowska S, Gillis WF, Jay M, Ye S, Mathis A, Mathis MW, Pereira T,

Linderman SW, Datta SR. (2023). Keypoint-MoSeq: parsing behavior by linking

point tracking to pose dynamics. https://doi.org/10.1101/2023.03.16.532307

1

2

3

4

5

6

7

8

9

https://doi.org/10.1016/j.pain.2008.08.002
https://doi.org/10.1016/j.jid.2024.08.018
https://doi.org/10.1016/j.neuron.2021.07.020
https://doi.org/10.7554/elife.84042
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.3791/58943
https://doi.org/10.57844/arcadia-mv9a-1yx3
https://doi.org/10.1038/s41467-021-25420-x
https://doi.org/10.1038/s41467-021-25420-x
https://doi.org/10.1101/2023.03.16.532307

