Published on Aug 15, 2025 by Arcadia Science DOI: 10.57844/arcadia-zf7s-3264

Automating identification
and quantification of
mouse scratch behavior in
video recordings

Itch is a key symptom of many diseases. Drug development for these
diseases requires assessing itch to determine if potential drugs
work. We developed a workflow to rapidly quantify scratching, a
measure of itch, in a pre-clinical animal model to speed drug
discovery.

Contributors (A-2)

Audrey Bell, Feridun Mert Celebi, Keith Cheveralls, Seemay Chou, Tori Doran,
Behnom Farboud, Megan L. Hochstrasser, Claire Kwon, Alba Peinado,
Kira E. Poskanzer, MaryClare Rollins, Peter S. Thuy-Boun

Version3 - Oct 22, 2025

Purpose

We sought to speed drug discovery by building an end-to-end video analysis pipeline
to assess itch in mice treated with itch-inducing substances (pruritogens) and tick
extracts that contain compounds that may alleviate itch. The pipeline leverages
machine learning (ML)-based pose estimation to track mouse scratching behavior and
automation in the cloud to accelerate analysis.


http://localhost:4321/user/audrey-bell
http://localhost:4321/user/feridun-mert-celebi
http://localhost:4321/user/keith-cheveralls
http://localhost:4321/user/seemay-chou
http://localhost:4321/user/tori-doran
http://localhost:4321/user/behnom-farboud
http://localhost:4321/user/megan-l.-hochstrasser
http://localhost:4321/user/claire-kwon
http://localhost:4321/user/alba-peinado
http://localhost:4321/user/kira-e.-poskanzer
http://localhost:4321/user/maryclare-rollins
http://localhost:4321/user/peter-s.-thuy-boun

This resource might be useful to researchers working on itch, applying ML-based
models to assess other behavioral readouts, or hoping to extract general lessons for
productionizing ML workflows in the cloud.

- All associated code is available in this GitHub repository.

- Check out our protocol, “A behavioral assay for measuring acute itch in mice,” for

step-by-step instructions to carry out the upstream scratch assay and generate the

videos that feed into this computational pipeline.

The strategy

The problem

Itch is a debilitating symptom and driver of numerous diseases that have a devastating
impact on physical and emotional health. Being able to categorize and quantify itch is
necessary to assess disease progression and the efficacy of treatment for itch-
associated diseases. The gold standard for quantifying itch in preclinical translational
models has been human observation and tallying of itch-specific behaviors from video
recordings, specifically pruritogen-induced scratching in mouse models [1].

Mouse scratching has traditionally been quantified through manual annotation of
mouse videos, counting mouse paw swipes across affected areas. This approach has
translated reasonably well to human clinical phenotypes [2], although the process of
manual annotation can be slow and tedious. Given our goal of using behavioral
phenotyping as a guide for our fractionation experiments, we needed ways to speed

up our in vivo analyses.

Our solution

To accelerate our studies on anti-itch compounds, we built a computational pipeline to

automate the steps involved in quantifying mouse scratching (please check out our


https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

companion protocol on how to

perform the mouse scratch assay).
Here, we present the workflow and
code we developed. We estimate that
it ultimately sped up our data analysis
by at least 50x%. One limitation,
however, is that our pipeline performs
well only on DBA/2J mice, which have
unique coloration patterns. Further
work is necessary to make it
generalizable for all mice.

Others have also developed ML-
based training sets to track and
quantify scratching in rodents [3][4].
While tracking mice using ML-based
algorithms isn't a new tool to aid in
scratch quantification, automating the
different arms of the process in the
cloud was unique and a game-
changer for decreasing our analysis
time between experiments.

We built this pipeline to quantify
scratching in mice, but we recognize
that there are other, less-appreciated,
itch-related behaviors that aren't
categorized as scratching. Since the
pipeline provides positional data for
numerous body parts of the mouse,
we hope others will use it to identify
and track metrics besides scratching
using unbiased ML-based clustering
algorithms.

Figure 1 outlines the pipeline. It
automates video cropping and
cataloging, body position tracking

Upload raw
video file

Nextflow pipeline

@ Pre-processing videos

/
7 9, -
ISy
- )\
= 0%

AL

N

Identifying and quantifyin e o
@ fying q yg //—o,,,f /

scratching &
\ (f Ve oz’
c A 1oscillation R
(1scratch) o
gg PRI
SE
g8
< > !
g Width Prominence
Time
Figure1

Schematic of automated workflow
for the analysis of mouse

scratching.

We uploaded unprocessed video
files and their matching metadata
(TXT) files to AWS, where we
triggered the NextFlow workflow. We
cropped the files to include only one
mouse per video and renamed them
based on the data in the metadata
file (time, date, camera, frame of
capture). We then used DeepLabCut
to track the six body parts, indicated


https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

using DeepLabCut, and scratch by the colored circles. We processed

quantification. the output pose estimation data from
DLC with a peak-finding script to
identify and quantify episodes of
scratching. The script looks at the
difference in xy positions between
the two rear hindlimbs to identify the
stereotypical cyclical movement

pattern of the scratching motion.

The resource

Code, including the NextFlow workflow, packages to preprocess videos and
analyze them with DLC, and the peak-finding scripts, is available in our GitHub
repo (DOI: 10.5281/zen0d0.16879067).

In this section, we dive into the details of our automated scratch assay analysis
pipeline. Figure 1 outlines the key steps of the computational analysis.

Preprocessing videos

We treated DBA/2J mice with pruritogens (itch inducers) and captured videos of their
behavior (see our protocol for this assay on protocols.io). Each video captured two

mice. To unambiguously catalog each mouse recording, we subjected videos
containing two mice to automated cropping into two videos containing one mouse
each (Figure 1, top panel). We renamed these videos based on position in the frame
(right vs. left enclosure), capture time, and date. We affixed quick response (QR) codes
just outside each mouse enclosure, and used a script to assign a 900 x 900 pixel
bounding box based on the corner of the QR code to perform the video cropping. Two
boxes defined two regions in the video to crop to generate two separate videos. We
then extracted the video capture time and date from an associated metadata file and
used them to rename the two cropped video files.


https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://doi.org/10.5281/zenodo.16879067
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

Training ML-guided body position tracking

We then employed automated, machine learning-guided body position tracking using
DeeplLabCut (v2.2.1, RRID: SCR_021391) [6]. We manually labeled six body parts,
generating a skeleton of the front left paw, front right paw, rear left paw, rear right paw,
nose, and rear of the animal. Some other studies [3] focus exclusively on labeling the
limbs that perform the scratching, but miss out on tracking other possible behaviors
that could be found by tracking many body parts. We performed training on an Intel
Core i9 CPU system and a NVIDIA GeForce RTX 3080-10GB graphics card. We
prepared a training dataset with the ResNet-50 convolutional neural network
backbone [5], using 43 videos with 2,200 total frames, extracting an average of 50
frames per video to label the six body parts manually. We split the dataset 95:5 for
training and testing, respectively. At each iteration of training, we extracted outlier
frames, corrected labeling, and then used them to retrain. Using a confidence
threshold of 0.6, training achieved an average train error of 0.32 mm (1.89 pixels) and

average test error of 1.25 mm (7.39 pixels).

Identifying and quantifying scratching

We then used the pose estimation data to explore the most robust means to quantify
scratching. Scratching in mice involves raising a right or left rear hindlimb to scratch
the affected area [6]. When plotting the change in hindlimb x,y position over time, the
cyclical nature of the scratching motion appears as a distinct oscillating curve
(Figure 1, bottom panel). We empirically determined that the clearest scratching
pattern (the greatest and most consistent difference in x,y positions over time) was
revealed when plotting the difference in the positions of the right and left hindlimbs

during scratching episodes.

We then wrote a Python peak-finding script to automatically identify the itch-

associated cyclical hindlimb displacement pattern noted above. To accurately flag
"waves" of rear hindlimb swipes in displacement-time graphs as scratching events, we
included several key variables in the script (Figure 1, bottom panel):

1. The minimum and maximum prominence of the peak

Peak prominence is a measure of how much a peak stands out from its


https://github.com/Arcadia-Science/trove-deeplabcut/blob/v1.0/bin/peak_finder.py

surroundings by calculating the minimum vertical distance you need to descend

from the apex of a peak before you could climb to an adjacent higher peak.
2. The minimum and maximum width of the peak
3. The maximum frequency of the scratches

4. The minimum number of oscillations of the curve within a given time,
corresponding to the number of scratches across the neck in a time bin
This final metric allowed us to distinguish the repeated pattern of scratching from
just random movement that may appear as less frequent oscillating displacement

of the hindlimb (e.g., rapid walking).

We adjusted these parameters, generated output tables with predicted scratching
events, and compared the predictions to ground-truth video footage and manual
quantification to confirm that the automated calls were correct. After some iteration,

we determined how to adjust the variable settings to call scratching events accurately.

Using this script, we were able to capture the following data (with precision dictated by
the video capture rate of 1/120 of a second):

1. Which limb is performing the scratching

2. Individual hindlimb swipes at the affected area

3. Number of swipes in a bout of scratching

4. Frequency of swipes and frequency of bouts of scratching.

Overall, these measures help capture the dynamics of scratching across the entire
time course of the video.

NextFlow workflow to orchestrate the analysis
pipeline in AWS

With all the different modules of the analysis pipeline complete, we wanted to take
advantage of the parallel processing power available in the cloud to further speed up
the video analysis. We ported the modules to Amazon Web Services (AWS) and built a
workflow using NextFlow to orchestrate the pipeline.


https://github.com/Arcadia-Science/trove-deeplabcut/blob/v1.0/bin/peak_finder.py

The NextFlow workflow is available in our GitHub repo.

Findings and caveats

The outcome of this effort was automation and parallel processing of analysis that
significantly accelerated the quantification of scratching and allowed rapid and nearly
real-time adjustment of experimental parameters for follow-up experiments. Less than
a day after an experiment was complete, we would have the results and could perform
the next experiment.

Direct comparison of manual quantification time to automated quantification is difficult
because a huge efficiency gain came from running the automated analysis in parallel
with many videos. However, a good approximation can be made by comparing the
analysis time for an average single experiment of 48 15-minute videos. Quantifying 48
videos took approximately 36 hours, which generally spanned seven days. With the

automated pipeline, 48 videos could be processed in three hours (~56x faster).

As noted by others [4], ML-based training weights for pose estimation are sensitive to
the specific conditions in the video (lighting, camera resolution, camera angle, frame
rate, etc.). For instance, our pipeline successfully tracks mice with coloration patterns
specific to DBA/2J mice. Re-training and fine-tuning will be necessary to generalize to
other mouse breeds that are visually distinct from DBA/2J mice. Additionally, slight
variations in our experimental setup (described here), may also require re-training.

Additional methods

We used ChatGPT to review our code and selectively incorporated its feedback. We
used Claude to review our code, selectively incorporating its feedback, and to help
clarify and streamline text that we wrote. We also used Grammarly Business to suggest
wording ideas and then chose which small phrases or sentence structure ideas to use.


https://github.com/Arcadia-Science/trove-deeplabcut/tree/v1.0
https://dx.doi.org/10.17504/protocols.io.4r3l21873g1y/v1

Key takeaways

In summary, we built a video analysis pipeline to quantify itch in mice treated with itch-
inducing substances and potential anti-itch compounds. Our pipeline significantly
accelerates video analysis and removes the variation inherent in using different human
observers in the same experiment. It also yields more granular data, such as
scratching frequency. Additionally, it provides the framework to use positional data and
non-scratching behavioral information to track other outcomes of experimental

treatments.

Next steps

We're currently winding down the Trove effort [7], so we won't continue development of
this resource. For those who may want to use this tool, further work should be done to
generalize ML training to follow mouse strains other than those with DBA/2J coloration
patterns. Further optimization of GPU use in the cloud could also increase efficiency
and decrease the analysis time.

Unsupervised ML-based algorithms [8][9] could also be used with our positional data
to identify emergent behavioral patterns caused by treatment regimes. These
emergent behaviors could provide another metric to follow that may display less
variability mouse-to-mouse than scratching.

Acknowledgments We'd like to thank Allan Basbaum and Juan
Salvatierra for suggestions on mouse recordings
and strategies for generating the training weights
with DLC.



References

Shimada SG, LaMotte RH. (2008). Behavioral differentiation between itch and
pain in mouse. https:/doi.org/10.1016/j.pain.2008.08.002

Yassky D, Kim BS. (2024). Mouse Models of ltch.
https://doi.org/10.1016/].jid.2024.08.018

Wimalasena NK, Milner G, Silva R, Vuong C, Zhang Z, Bautista DM, Woolf CJ.
(2021). Dissecting the precise nature of itch-evoked scratching.
https://doi.org/10.1016/j.neuron.2021.07.020

Yu H, Xiong J, Ye AY, Cranfill SL, Cannonier T, Gautam M, Zhang M, Bilal R, Park J-
E, Xue Y, PolamV, Vujovic Z, Dai D, Ong W, Ip J, Hsieh A, Mimouni N, Lozada A,
Sosale M, Ahn A, Ma M, Ding L, Arsuaga J, Luo W. (2022). Scratch-AID, a deep
learning-based system for automatic detection of mouse scratching behavior
with high accuracy. https://doi.org/10.7554/¢elife.84042

Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW. (2019). Using
DeeplLabCut for 3D markerless pose estimation across species and behaviors.
https://doi.org/10.1038/s41596-019-0176-0

Yamanoi Y, Kittaka H, Tominaga M. (2019). Cheek Injection Model for
Simultaneous Measurement of Pain and Itch-related Behaviors.
https://doi.org/10.3791/58943

Chou S, Farboud B, Rollins M. (2025). Lessons from our approach to
bioprospecting in ticks. https:/doi.org/10.57844/arcadia-mv9a-1yx3

Hsu Al, Yitri EA. (2021). B-SOiD, an open-source unsupervised algorithm for
identification and fast prediction of behaviors. https://doi.org/10.1038/s41467-
021-25420-x

Weinreb C, Pearl J, Lin S, Osman MAM, Zhang L, Annapragada S, Conlin E,
Hoffman R, Makowska S, Gillis WF, Jay M, Ye S, Mathis A, Mathis MW, Pereira T,
Linderman SW, Datta SR. (2023). Keypoint-MoSeq: parsing behavior by linking
point tracking to pose dynamics. https://doi.org/10.1101/2023.03.16.532307



https://doi.org/10.1016/j.pain.2008.08.002
https://doi.org/10.1016/j.jid.2024.08.018
https://doi.org/10.1016/j.neuron.2021.07.020
https://doi.org/10.7554/elife.84042
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.3791/58943
https://doi.org/10.57844/arcadia-mv9a-1yx3
https://doi.org/10.1038/s41467-021-25420-x
https://doi.org/10.1038/s41467-021-25420-x
https://doi.org/10.1101/2023.03.16.532307

