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DIY Raman spectroscopy
for biological research

We optimized an open-source Raman spectrometer for solid and
liquid biological samples, including microorganisms, organic
solvents, and biochemicals. Here, we share a calibration protocol,
data processing notebooks, sample prep methods, and a nascent
spectral reference library.
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Purpose

In the field of biology, researchers have historically gained rich scientific insights by
observing the interaction between light and matter. Optical microscopy and
spectroscopy fundamentally require relatively few components — namely, a light
source, a detector, and a sample. However, capturing the right photons to interrogate a
biological sample meaningfully can be challenging, especially if it's dynamic or living.
Here, we began with an open-source spontaneous Raman spectrometer (preliminarily
used to study chili, beer, and algae in a hackathon [1] and optimized it for biological
samples. Raman spectroscopy is a label-free vibrational optical spectroscopy method
that can reveal molecular composition, structure, and environmental information. We

tested sample preparation, calibration methods, and stage configurations to optimize
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the Raman signal from various samples, including media, reagents, and cells in liquid
and solid cultures. We're sharing resources for optimizing this inexpensive and easily
fabricated Raman spectrometer for biology: a calibration protocol, Jupyter Notebooks
with Python code for applying calibration and data processing, notes on
troubleshooting the system and optimizing biological sample signal, and a preliminary
spectral library. We hope biologists interested in exploring a rapid approach to
collecting high-dimensional information about the chemical composition of a sample
will find these materials helpful. Biologists and biochemists - from students to
professional researchers — can build this system and apply our methods and code to
analyze biological and living samples.

« All associated code for analyzing the spectral data is available in this GitHub
repository.
- Data from this pub, including the raw and processed spectra, are available in the

“data” folder on GitHub. The spectral library from this pub is available in a CSV file in
the “spectral_library” folder.

- A protocol we created for “Calibration of the OpenRAMAN DIY Raman

spectrometer” is available on protocols.io.

The strategy

Biologists have increasingly used Raman spectroscopy to collect spatially and
temporally resolved information about life and its processes [2][3]. Given that little to
no sample preparation is required, Raman applies to a wide range of dynamic systems.
When monochromatic light is focused on a sample, the sample absorbs, reflects, or
scatters the photons. A small percentage of these photons scatter inelastically, which
means their energy and wavelength change through interaction with the sample.
These slight energy shifts, or Raman shifts, indicate the vibration of specific chemical
bonds in the sample (Figure 1). Researchers have used this technique to assess
phenotypic heterogeneity in bacteria and yeast [4], mammalian cells [5], plants [6],
filamentous fungi [7], and protists [8]. Furthermore, Raman spectroscopy is promising
as a label-free method of tracking metabolic activity [9][10], even at the scale of a
single cell [11], and can be used to probe specific mechanisms such as cell
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inflammation [12]. The field has recently expanded to link Raman spectroscopy with
bioinformatics tools to enable spatially-resolved, systems-level “spectromics” on cells

[13].
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Figure 1

Introduction to Raman spectra through an overview of acetonitrile.

Raman is a spectroscopy technique in which each peak in a spectrum
corresponds to vibrational modes of a specific molecular bond in the material.
This overview figure shows how the peaks in acetonitrile, a common reference
material, correspond to various vibrational modes. Data are from 2024-10-11.

Raman spectroscopy can also capture dynamic changes in samples across time
points or in real time. For instance, researchers have used the technique to study the
degradation of nanocarrier drug-delivery systems [14], molecular changes in human
lung carcinoma epithelial cells [15], and to monitor enzyme-catalyzed reactions [16].
As labels are unnecessary and acquisition times can be short, this technique has
special relevance in observing a changing living system with comparatively little risk of

altering that system.



While many published works on Raman spectroscopy use expensive commercial or
custom systems, there are a few examples of low-cost Raman systems. We previously
built one of these, OpenRAMAN (“Starter Edition”), to explore rapid analysis of
biological samples. This system has two configurations: the solid cuvette, which has a
sample stage, and the liquid/standard cuvette, which has a tube holder (Figure 2). The
system is < $3,500 (USD), has a detailed build guide, an active user community, and
has accompanying open-source software available. However, it hasn't been used
extensively for biological applications or to capture dynamic phenotypes. We sought to
improve our implementation of this DIY Raman system and demonstrate its utility for
biological research.
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Figure 2

Solid and liquid configurations of the OpenRAMAN
(Starter Edition).

(A) Schematic of the solid configuration used for
capped liquids, powders, minerals, dried solutions,
and solid cultures.

(B) Schematic of the liquid configuration used for

samples in borosilicate tubes.

The problem

In our first implementation of the OpenRAMAN system, data were easy to acquire but
didn't contain many Raman peaks that could be used for analysis. In addition, the
system needs to be better calibrated to interrogate samples meaningfully, compare
spectra across samples, and compare them to published literature. We reviewed data
from that implementation, including 2D images from the CMOS camera and the 1D



spectra, to identify where we could improve the system. We observed significant
background noise, likely from stray light, and broad, aberrant lines from a neon bulb.
Such a source should generate clear lines in a 2D image, translating into sharp, high-
amplitude peaks in a spectrum. Furthermore, the Raman spectra collected previously
had broad peaks and possible fluorescence. Together, these observations suggest
that the optical path wasn't optimized.

Our solution

In this follow-up work, we had several goals:

1. To improve the quality of the acquired Raman spectra
2. To create a calibration workflow using known reference materials

3. To assess the performance of the system regarding spectral resolution and

positional accuracy of peaks
4. To develop methods for preparing biological samples
5. To collect an initial library of biologically relevant spectra

6. To observe dynamic phenomena in living cells.

To achieve these goals, we realigned the system and developed procedures to
measure its calibration and performance. We collected reproducible data on samples
relevant to biological research with sufficient spectral resolution to distinguish Raman
features. Through this effort, we demonstrated that this low-cost system can

successfully support biological investigations.

System optimization

In addition to Raman scattered photons, the spectrum of any given sample potentially
contains sighal and noise from many other sources. Sample fluorescence, emissions
from the optical components, environmental light and cosmic rays, and noise sources
such as shot noise, readout noise, fixed pattern noise, and dark noise can all be
present to varying degrees [17][18] and decrease signal quality. An optimized system
aims to maximize the number of Raman-scattered photons from your sample that
reach the detector and minimize all other photons.



In our system, sample illumination generated by a 532 nm (green) laser is reflected by
mirrors and focused through a lens onto the sample surface. A small percentage (up to
one in 107) of photons are scattered back with different energy from the incident light
(Raman-scattered) and return through the sample path along with light that's the same
energy as the laser (Rayleigh-scattered). The returning light passes through a dichroic
mirror and filters that reject most of the Rayleigh-scattered light. The light is focused
on a 50 um slit to limit the out-of-focus light and thus increase the spectral resolution,
then collimated before hitting the diffraction grating. The grating spatially separates
light with differing wavelengths and projects them onto the detector. We used both
system configurations, the solid and liquid cuvette, with different sample paths (Figure
2).

We began this work by taking apart the system (except the laser, which we verified was
working as expected) and assessed each component to ensure it was clean and
placed correctly. Beginning with the camera placement, we worked step-by-step on
the optical path using a fluorescent light bulb to align the lenses and slit. We then
placed a neon light source in the light path and refined the position of each
component to optimize the position and intensity of the resultant spectrum in the 2D
image. We aligned the diffraction grating, optimizing the signal in our region of interest
(ROI), which was 2048 pixels wide and 100 high. We limited the ROI height to avoid
including noise from pixels that don't receive light. Finally, we turned on the laser and
optimized the incident light path, ensuring maximum light (lux) reached the sample
end of the optical path with a digital light meter (Urceri, MT-912).

We used the suggested spectrometer cover to reduce the noise caused by stray light

and built an enclosure using corrugated black plastic, as in our previous work. We

acquired all spectra using the Spectrum Analyzer suite (r123) and processed them with

the code in the linked GitHub repository. To ensure we'd limited stray light sources, we
acquired a “dark spectrum” with the laser light off (Figure 3, blue line). The dark
spectrum had minimal signal compared to the intensity of a spectrum from the neon
source (Figure 3, compare blue and orange lines). This neon bulb, following calibration,
provided well-defined peaks as expected from an atomic light source. These sources
have atoms in the gas phase, so they don’t exhibit vibrational or rotational states and,
therefore, have narrow peaks.

After optimizing the light path, we measured the laser power at the sample surface
during the alignment using a Thorlabs PM16-120 sensor. The final post-alignment
measure was 2.9 + 0.08 mW. We then used 4 mL of HPLC-grade acetonitrile (VWR) in
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a capped quartz
cuvette (Starna
Cells) in the solid
configuration as a
test standard. We
tuned two
parameters
contributing to
signal quality:
exposure (1-10,000
ms) and number of
averaged
acquisitions (1-100).
Increasing the
exposure duration
can increase the
number of photons
reaching the
detector, improving
the signal, but can
also pick up cosmic
rays or other noise
events. Increasing
the number of

averaged

acquisitions can mitigate cosmic rays, but increases read noise with each acquisition.
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Figure 3

Comparison of the neon spectrum and the dark

spectrum.

The neon spectrum is used as a calibrant, while the
dark spectrum measures the system's background
noise. We used 1,000 ms for neon exposure to avoid
saturating the detector and 10,000 ms for the dark
since this was the longest exposure we'd likely use for
actual samples. Neither spectrum has been
processed after acquisition, and both were acquired
with five averaged acquisitions. Data are from 2024-
10-18.

After verifying the presence of expected Raman peaks, we conducted a parameter

sweep to identify the optimal acquisition time and number of averaged acquisitions

(Figure 4). We could detect the most intense peaks of acetonitrile at very short

acquisitions — 10-50 ms (Figure 4, A, right axis, 10-50). Minor peaks became evident
at exposures of 100 ms and were resolved at exposures of 501 ms and above (Figure
4, A, right axis, 100-501). A spectrum from a single 1,000 ms exposure contained eight
detectable peaks (Figure 4, B, right axis, 1), though slightly less noise was evident after
averaging two similarly exposed spectra (Figure 4, B, right axis, compare 1and 2) and
increasing the number of averaged spectra increased the resolvability of minor peaks
(Figure 4, B, right axis). Based on these results, we decided to use 1,000 ms and
10,000 ms as standard settings, and average between one and five acquisitions. In
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most cases, we began with 1,000 ms exposure and increased to 10,000 ms if peaks
weren't well resolved. The results showed us that neon and acetonitrile are useful as
calibrants, with the parameters we tested, and could be the basis of our calibration

protocol.
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Figure 4

Comparison of acquisition parameters for samples of acetonitrile.

We analyzed acetonitrile at different exposures and the number of averaged
acquisitions to determine suitable baseline acquisition parameters.

(A) Acetonitrile spectra collected with exposure times ranging from 1 ms to
10,000 ms; we averaged five spectra in all cases.

(B) Acetonitrile spectra collected by averaging one to 20 acquisitions; we used
1,000 ms exposure in all cases. Data are from 2024-10-11 and were baselined
with airPLS and min-max scaled.

The resource

This resource has several components: a calibration protocol for the OpenRAMAN
system (both configurations), a Jupyter Notebook for generating calibration equations,
a Python script for applying this calibration to sample data, suggested acquisition



parameters for biological samples, and a small spectral library with raw and processed
data as well as peak lists. Together, the components should allow any user to calibrate
this DIY Raman system, acquire usable Raman spectra on biological samples,

measure system performance, and compare results to our library.

All associated code, the spectral library, and all data are available on GitHub
(DOI:10.5281/2en0d0.14908269). If you run into issues, please comment on the

protocol or this pub, and we’ll be happy to discuss it.

Calibration overview

TRY IT: Our full protocol for calibrating the OpenRAMAN system is available on
protocoils.io (DOI: 1017504 /protocols.ioyxmvmemj6g3p/vi).

We developed a standard calibration protocol to collect spectra from reference
materials. We then used these spectra to generate equations to compare data from
this instrument to other instruments. We used the equations to convert between the
acquired units (pixels, #) and wavelength (hanometers, nm)/Raman shift
(wavenumbers, cm~') based on the known peaks of the two reference materials.

Atomic emission sources are those where electrons from known atoms are excited
and emit photons of specific energy when the electrons return to the ground state,
resulting in spectra with sharp peaks at known fixed wavelengths that are robust to
local environmental changes. For these reasons, they're typically used for calibration.
We chose to use neon as an atomic emission source, consistent with the
OpenRAMAN documentation, because neon bulbs are inexpensive, easy to acquire,
and have well-known spectral peaks commonly used for calibration of 532 nm Raman
instruments [19].

We then turned on the laser and acquired a spectrum of acetonitrile as an additional
reference material. We used acetonitrile as a standard for this test, as it's an organic
liquid with multiple strong, narrow peaks across our range of interest. In contrast to
neon, the acquired acetonitrile spectrum comprises Raman-scattered photons and
can be used to verify the conversion.
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We exported data from samples and dark and blank spectra in CSV format and
imported them into the calibration notebook. We applied median filtering and
baselining to both spectra to prevent peak finding and fitting issues. We selected 15
well-resolved peaks in the neon emission spectrum as reference points. These peaks
have known wavelength positions and thus can be used to convert pixel numbers to

nanometers. We used the SciPy signal software package (v1.13.1) to find the 15
corresponding peaks in the acquired neon spectrum and the Imfit package (v1.3.1) to fit
Gaussians to each peak and calculate the center and width. We then plotted the
measured peaks (in pixel #) against the known reference peaks (in nm) and fit a linear
equation. We then used this equation to convert the neon spectrum from pixel to
wavelength. We calculated the difference between the measured and reference peaks
to calculate the error across the detector and average positional error. Both these
metrics are related to the accuracy of acquired spectra with our system, based on the
difference between the x-axis position of the peaks of a standard sample in our data

versus literature references. As shown in Figure 5, this error forms a parabolic shape,

related to how the diffraction grating disperses light across the detector, which is
described by the equation:

dsin(f) = mA
where 6 = wavelength, A = diffraction angle, and d = grating spacing.

We applied the conversion equation to the acetonitrile spectrum and then converted
from wavelength (nm) to Raman shift (cm~) using the Raman shift equation for 532 nm
excitation systems:

. 1 1
Raman shift = (107) (532 B Wavelength)

We then found and fit peaks in the spectrum, calculating the center and width. We
plotted the measured peaks (in cm~) against the known reference peaks (cm~') and fit
another linear equation. This is a minor adjustment to account for slight variations in
laser behavior and environment that could affect Raman scattering. In this step, it’s
also easy to catch systematic errors in conversion or issues such as signal attenuation
that could indicate a problem in the path from laser to sample to detector. We show
the resulting calibrated spectra, peaks, and deviation from reference values across the
detector in Figure 5.
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We used neon and acetonitrile data to generate the calibration equations.

3,000

(A) Neon spectrum in wavelength (nm) with fitted peaks collected at 1,000 ms

exposure.

(B) Acetonitrile spectrum in Raman shift (cm™) with fitted peaks collected at

1,000 ms exposure.

(C) Difference between observed and reference peak values for neon.



(D) Difference between observed and reference peak values for acetonitrile. Data
are from 2024-08-27.

System performance

We can measure the system's performance in several ways: how accurately the peaks
of a sample are detected, the spectral resolving power of the instrument, and signal
intensity. We used data from neon and acetonitrile in both configurations of the cuvette
to generate performance metrics and characterize the system's behavior. The
performance metrics included expected peak positional error, full width at peak half
maximum (FWHM), and signal-to-noise ratio (SNR). Peak positional error is the
deviation from expected, based on reference spectra, peak positions (+ cm~). For
Raman systems, FWHM is an indicator of the spectral resolution when measuring a
reference material with narrow spectral peaks such as an atomic emission source [18].
For more complex samples, FWHM can change based on properties, such as
crystallinity [20], or environmental conditions, such as temperature [21].

The stated performance of the OpenRAMAN (Starter Edition) is a resolution of 35 cm™!

on the 820 cm~ peak of isopropanol, with a range of about 500 to 3,500 cm™. The
specific range limits can change as the alignment of the detector to the grating is

altered.

We calculated the metrics based on the 2,942 cm‘—1 peak of acetonitrile, which is

expected to be very strong. We subtracted the dark spectrum and applied median
filtering (kernel size = 5). We also applied baseline correction to the spectra, removing
background signals from stray light, fluorescence, or other emissions and “flattening”
the spectrum to more easily identify peaks. There are several approaches for
baselining; here, we used the airPLS algorithm [22]. After finding the peaks, we
calculated the SNR based on the following equation:

SNR — peak intensity — background signal

rms(background signal)

We defined the background signal as the intensities between 1,900 and 2,000 cm™,
part of the “quiet region” of a Raman spectrum [23]. This region typically doesn't have

peaks from fundamental modes, especially for spectra from biological samples. Table
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1 reports the system performance, measured on acetonitrile in the solid configuration

on 2024-09-18 and liquid on 2024-08-09.

Metric | Explanation Solid Liquid
Distance between measured value and 1.354 1.755
Error o 1 -~
reference value for peak position cm cm
21.225
FWHM | Full width at half maximum of a peak 19'3_?4 -1
cm cm
SNR Signal-to-noise ratio based on equation 781 481
Table 1

System performance.

We calculated key metrics for solid and liquid configurations using acetonitrile in
a capped quartz cuvette or a borosilicate tube. For each calculation, we used the
2,942 cm™! peak.

Spectral library

While the application of Raman spectroscopy to biological samples is increasing,
there are still only a few accessible libraries. We collected and processed data for a
spectral library focused on samples relevant to biological research (Table 2). For many
samples, we acquired data in both solid and liquid configurations. All liquid
configuration samples were in disposable borosilicate tubes (VWR, 47729-566) placed
in the sample holder with no additional position adjustments for focus. We put
powders, crystals, and solutions in the solid configuration on a mirrored grade 304
stainless steel substrate, which increases the Raman signal for biological samples
[24]. We cleaned this substrate with 70% ethanol and dried the substrate between
samples. We put solid biological cell cultures and media on matte black foil (single use)
and targeted the colony surface using the visible beam to find the best focus position.
All solutions listed below, other than those listed in the category “solvent,” are agqueous

solutions.



Category Sample Source Configuration | Notes
. . . Ward’s .

Mineral Optical calcite Science Solid Crystal
Magnesium sulfate Sioma- Solid Powder
heptahydrate, = Algrich 1™

o _
99% Liquid solution
Calcium sulfate Ward’s .
dihydrate Science Solid Powder
Sodium sulfate, = Sigma- .

Salt 99% Aldrich Solid Powder
Potassium .
phosphate i:g:]ah_ Solid Powder
monobasic, = 99% ¢
Sodium phosphate
dibasic Sigma- :
heptahydrate, 98- Aldrich Solid Powder
102%

In
. capped
Acetonitrile, > VWR Solid quartz
99.5% cuvette

Solvent Liquid -
Isopropanol, 200 -
proof VWR Liquid -
Ethanol, 200 proof VWR Liquid -

Solid Powder
. 0.001-1M

Glycine, 99% VWR Solid solution
Liquid 0.001-1M

Amino acid lqui solution
L-Methionine, = Sigma- .

98% Aldrich Solid Powder
. Beantown .
- [0)
L-Tyrosine, 99% Chemical Solid Powder

Carboxylic Citric acid, = 99.5% | >'9mMa- Solid Powder

acid Aldrich




Category Sample Source Configuration | Notes
Fatty acid Palmitic acid, 95% AmBeed Solid Powder
D-(+)-glucose, Sigma- .
99.5% Aldrich Solid Powder
Carbohydrate | Sucrose Ward's Solid Powder
Science
Sigma- .
Methylcellulose Aldrich Solid Powder
Halobacterium sp. Carolina Solid Colony
NRC-1 Biological on agar
Halobacterium sp. Carolina Liquid Liquid
NRC-1 Biological 9 culture
Halobacterium Carolina Solid )
agar Biological
Halobacterium Carolina Liquid )
medium Biological
. Carolina . Colony
E. colf K12 Biological Solid on agar
. Carolina - Liquid
Biological E. coliK-12 Biological | -‘duid culture
LB agar Sigma- Solid -
Aldrich
LB medium Sigma- Liquid -
u Aldrich au
Chlamydomonas : Colony
reinhardtiicci24 | ITEX Solid on agar
Chlamydomonas N Liquid
reinhardtii CC124 UTEX Liquid culture
TAP agar UTEX Solid -
TAP medium UTEX Liquid -
Background Matte black foil Rosco Solid -
Cleaned
Stainless steel Yodaoke Solid with 70%
ethanol

No sample

Liquid




Category Sample Source Configuration | Notes

Cleaned
Borosilicate tube VWR Liquid with 70%
ethanol

Table 2

List of samples in spectral library.

We applied standard acquisition and processing parameters for the spectral library
presented in this pub. The parameters were median filtering (kernel size = 5), zero dB
gain, five averaged acquisitions, and a 100-pixel ROI. We chose these based on the
initial results from the acetonitrile parameter sweep (Figure 4) and other preliminary
tests. We exported all data in CSV format and calibrated it using the neon and
acetonitrile calibration data for that day and configuration, which was median-filtered
(kernel size = 3) and baselined using the airPLS algorithm from the pybaselines
module. We didn't usually apply background subtraction, which would remove the
substrate (e.g., borosilicate tube or foil signal) but could increase noise. We note the
exposure and any differences in acquisition or processing in the figure captions. We

report peaks in a spreadsheet that's available with this pub in the “spectral_library”

folder of our GitHub repo.

Background contributions

In addition to each sample measurement, we collected spectra of background
materials to assess the spectral contributions of the substrates and the apparatus
itself (Figure 6).
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Figure 6

Comparison of background contributions for liquid and solid
configurations.

We compared the spectra of the substrates for each configuration. All spectra
are raw with no post-processing.

(A) For the liquid configuration, we compared the borosilicate tube, which holds
samples, to the empty plastic tube holder. We used 1,000 ms exposure for these
spectra that were collected on 2024-08-27.

(B) For the solid configuration, we compared two substrates used for different
samples. We used 1,000 ms exposure and applied filtering but didn't baseline
these spectra collected on 2024-08-27 and 2024-10-11.

These “dark” spectra typically showed no resolvable features and low background
noise. The borosilicate tube spectrum (Figure 6, A) rose at ~800 cm~', while the liquid

configuration with no sample or tube present had a broad feature at ~3,300 cm™~. The
broad feature was likely due to the plastic we used to make the tube holder. The
stainless steel spectrum (Eigure 6, B) rose around 800 cm™', and the black foil signal
slightly rose at around 3,400 cm™". In some cases below, we used background
subtraction to remove the contribution of these components from the spectra.
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We analyzed a set of common
laboratory reagents between 2024-
10-11 and 2024-10-18. We used
10,000 ms exposure, baselining
using airPLS, and min-max scaling
for all spectra.

Minerals and salts

We analyzed a set of minerals and salts: optical (crystalline) calcite, magnesium sulfate
heptahydrate, calcium sulfate dihydrate, sodium sulfate, potassium phosphate
monobasic, and sodium phosphate dibasic heptahydrate (Figure 7). We analyzed all of

these samples with the instrument in the solid configuration, and all but the calcite (a
crystal) were in powder form. We compared each of the spectra to peaks reported in
reference literature and found suitable matches in nearly all cases, with most peaks
within + 5 cm™,



Solvents

We analyzed three common organic solvents in the liquid configuration: acetonitrile,
isopropanol, and ethanol (Figure 8). We also analyzed acetonitrile in a quartz cuvette in

the solid configuration. With regard to peak intensities and positions, the spectra from
acetonitrile collected in both solid and liquid configurations were qualitatively very
similar. However, peaks were slightly broader in the liquid configuration. There was
more visible noise in all liquid sample spectra, and the expected broad background
feature started at around ~3,300 cm™'. The peaks in each spectrum matched

published references well (+ 5 cm~); we note the deviations in the linked spreadsheet.
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Figure 8

Comparison of organic solvents
for liquid and solid configurations.

We analyzed a set of common
organic solvents. From top to bottom,
the spectra are ethanol (liquid
configuration), isopropanol (liquid),
acetonitrile (liquid), and acetonitrile
(solid). We collected these spectra
between 2024-08-27 and 2024-09-
03. We used 1,000 ms exposure and
applied min-max scaling for all

spectra.

Glycine parameter sweep

Before analyzing many biomolecules, we did a parameter sweep with one sample —
glycine — to determine parameters that may usefully serve as a baseline for spectrum
acquisition from other molecules. Glycine is an organic molecule with peaks between
1,000 and 3,100 cm™'. Using the solid configuration, we collected spectra sweeping
through two parameters: the exposure time (100-10,000 ms, Figure 9, A) and number
of averaged acquisitions (1-100, Figure 9, B. We found that the signal improves
noticeably from one to five averaged acquisitions and only modestly with increasing



acquisitions. Across the sampled range, increasing exposure notably improves the
signal with 10,000 ms, providing decreased noise. We established 10,000 ms and five
averaged acquisitions as our typical parameters for solid biochemical powders, to

balance the SNR and overall acquisition time needed.
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Figure 9

Glycine parameter sweep.

We analyzed glycine powder using different parameters. In all cases, we used the
solid configuration and cropped the spectra from 1,000-3,500 cm~' to show the
major peaks better, baselined with airPLS, and min-max scaled. Data are from
2024-09-03.

(A) Glycine powder spectra collected with five averaged acquisitions and
exposure ranging from 100 to 10,000 ms.

(B) Glycine powder spectra collected with 1,000 ms exposure and from 1to 100
averaged acquisitions.

Biomolecules

We analyzed a panel of organic biomolecules in powder form with the spectrometer in
the solid configuration (Figure 10). We chose three amino acids (glycine, L-methionine,
and L-tyrosine), citric acid, palmitic acid, and three carbohydrates (D-glucose, sucrose,
and methylcellulose). Consistent with expectation, the glycine, tyrosine, sucrose, and



methylcellulose spectra had strong background fluorescence (Figure 10, A). However, it
was difficult to identify peaks below ~1,000 cm~in each case. We assessed several
different baselining algorithms from the pybaselines module to remove the
fluorescence and used a modified polynomial (Figure 10, B), though it still has artifacts
due to fluorescence at < 1000 cm™'. Regardless, we could resolve the major peaks of
every compound, except for methylcellulose, due to its high fluorescence background.
We compared each of the spectra to peaks reported in reference literature and found
suitable matches in nearly all cases, with most peaks within + 5 cm™".
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Figure 10

Spectra of biomolecules.

We analyzed biomolecules, including amino acids (glycine, L-methionine, L-
tyrosine), citric acid, palmitic acid, and carbohydrates (D-glucose, sucrose, and
methylcellulose). We acquired all spectra on 2024-10-11 with 10,000 ms

exposure and min-max scaled.
(A) Unbaselined spectra.

(B) Spectra with polynomial fit baseline removed.



Glycine dilution series

To determine the detection limit of our system for a target biomolecule, we tested a
dilution series of glycine powder in Millipore water ranging from 1to 0.001 M (Figure 11).
We used solid (Figure 11, A) and liquid (EFigure 11, B) configurations for this test. We
pipetted 200 pL of each solution onto cleaned stainless steel for the solid
configuration and used 3 mL of solution in the borosilicate tube for the liquid. In both
configurations, we could only distinguish glycine peaks from the 1 M solution, though
we could see the water O-H stretching mode at all concentrations in the solid
configuration. The background signal from the borosilicate vial and liquid sample
holder obscured that region in the liquid configuration; therefore, we truncated it in the
figure above.
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Figure 11

Glycine dilution series in solid and liquid configurations.

We analyzed glycine at different concentrations (0.001to 1 M) in solid and liquid
configurations. We acquired all spectra at 10,000 ms exposure, baselined using
airPLS, and min-max scaled.

(A) Samples in solid configuration collected on 2024-10-18.

(B) Samples in liquid configuration collected on 2024-08-29. We truncated the
liquid sample spectra at 3,300 cm~" to remove the background feature.



Biological samples

Having established the effectiveness
of this instrument in collecting spectra
from biomolecules, we then evaluated
its utility for collecting spectra from
living biological samples. We first
assessed different preparations for
biological samples, focusing on lower-
effort methods since one of our
interests is rapid, scalable
phenotyping. Using the two
configurations of the system, we
compared the spectra from solid and
liquid samples of three different
microorganisms: Escherichia coli K-12,
Halobacterium sp. NRC-1, and
Chlamydomonas reinhardtii 124
(Figure 12). E. coli is one of the most
common model bacteria used in
laboratory studies and has little or no
pigmentation. The solid culture was
grown for 24 h at 37 °C on LB agar,
whereas the liquid culture was grown
for 16 h at 37 °C in liquid LB medium
shaking at 200 rpm. Before analysis,
we pipetted the liquid culture up and
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Figure 12

Biological samples in both

configurations.

We analyzed three species in the
solid and liquid configurations
between 2024-08-27 and 2024-09-
03. Each spectrum is n = 1; solid
samples are darker colors, and liquid
samples are lighter. We used 10,000
ms exposure, baselining with airPLS,
and min-max-scaled all spectra.

down to more uniformly suspend the E. coli cells. Halobacterium sp. NRC-1is a model
extremophilic archaeon that produces multiple C40 and C50 carotenoids and survives
low water and high salt conditions. We purchased the solid culture on Halobacterium
agar from Ward’s Science and stored it at room temperature before analysis. We grew
the liquid culture for 24 h at 30 °C, 200 rpm, then allowed it to settle at room
temperature for 48 h. The cells formed a denser film, which we then disrupted and
suspended before analysis. Chlamydomonas reinhardtii 124 is a photosynthetic,
single-celled alga that produces chlorophyll and carotenoid pigments and is motile.
We grew the liquid culture in TAP medium in a rotating drum at room temperature

under a 12 h light-dark cycle. We grew the solid culture on TAP agar at room



temperature under continuous light and placed in the dark overnight before data
acquisition.

In both configurations and sample
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i nal .
Halobacterium parameter sweep analyses

li fi tion).
(solid configuration) We did a parameter sweep using a

We analyzed a solid culture of
Halobacterium sp. NRC-1. Each
spectrum is n = 1and collected on
2024-09-03. We used baselining
with airPLS and min-max scaled all
spectra for all samples.

solid culture of Halobacterium sp.
NRC-1to understand how much signal
we could recover at low exposures
that would be more suitable for
dynamic analysis (Figure 13). As with

all solid biological samples, we placed

a small piece of the colony with agar

on black foil onto the sample stage.
We tested three exposures: 100 ms, 1,000 ms, and 10,000 ms. Exposures of 10,000
ms provided only modest improvements in peak SNR over 1,000 s exposure,
suggesting that shorter exposures could be used for assessing changes over time for
this species and possibly those with similarly detectable pigments.

We then assessed variation between replicates of the same sample. We analyzed
three biological replicates of each species in the solid configuration (Figure 14), placing
samples on black foil and focusing the laser on the colony's surface. In all cases, we
saw a fluorescence background from the sample, which is expected given the
excitation wavelength we're using and the fact that these are biological samples [2]. As



before, with E. coli, this background
was strong enough that we couldn't
discern any Raman peaks. However,
we could clearly distinguish several
consistent peaks for the other two
species across replicates.

We could see over ten peaks across
800 to 3,000 cm™! for Halobacterium.
These peaks were: 957 cm~!, 1,002
cm™,1152 cm~,1,196 cm~,1,284
cm™, 1,446 cm~,1,507 cm~, 2,107
cm™, 2149 cm™,2,296 cm™, 2,444
cm~,2,501cm™, and 2,647 cm~. The
peaks below 2,000 cm™ are likely due
to the vibration of carotenoid
pigments in Halobacterium, which
usually yield strong signals under 532
nm excitation [25]. Those above
2,000 cm~' may be combinations or
overtones of the fundamental modes.
There's also the possibility that some
of the peaks — at 957,1,284, and 1,444
— may be due to other biomolecules,
such as phosphate groups from

phospholipids or nucleic acids, amide
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Figure 14

Three biological samples in solid
configuration.

We collected spectra on multiple
samples for three species on 2024-
09-03. Each light line is n =1, and the
darker line is the average for the
three. We used 10,000 ms exposure,
baselining with airPLS, and min-max
scaled all spectra.

groups in proteins, or CH, or CHz groups in lipids and proteins.

For C. reinhardtii, we saw a fluorescence background that changed over time with

increased light exposure. However, we could still distinguish several peaks at 966
cm~1010cm=,1,160 cm~,1195 cm~', 1,275 cm~', and 1,527 cm~'. These are similar

to Halobacterium, suggesting that a carotenoid pigment is present and enhanced

under this excitation wavelength. The 966 and 1,275 peaks could also be due to

chlorophyll a. A combination of carotenoid and chlorophyll peaks is typically

responsible for most of the peaks in this species [26].

Time-series analysis of Chlamydomonas reinhardtii cc124



We noticed a visible change in the color of the laser spot on the surface of C.
reinhardtii cultures over time and a change in the background fluorescence of spectra
over time. We decided to investigate how the spectrum of this culture changes with
continuous laser light exposure, capturing a 1-second exposure spectrum every
minute for 20 minutes (Figure 15, A). During this time, we observed that the visible laser
spot on the sample changed from red to orange, a change that's potentially consistent
with the known phenomenon of chlorophyll fluorescence decay [27]. This occurs when
dark-adapted photosynthetic organisms are exposed to light for an extended time,
which leads to an increase in fluorescence emission intensity and subsequent
decrease. Our previous work using the phenotype-o-mat observed this phenomenon
over 20 minutes [28] with exposure to 460 nm light.
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C. reinhardtii 124 time series.

We analyzed solid cultures of Chlamydomonas reinhardtii 124 over 20 minutes,
with spectra captured every minute under continuous laser light. We acquired all
data at 1,000 ms exposure and a single spectrum acquisition on 2024-09-04
and didn't apply filtering.

(A) Unbaselined spectra.

(B) Baselined spectra using the function built into the OpenRAMAN Spectrum
Analyzer software (version r123).



In the current work, we're using overnight dark-adapted cells exposed to continuous
532 nm light, a wavelength that Chlamydomonas cells don't absorb as well [29].
Research with C. reinhardtii grown under green light has shown enhanced energy
transfer from light-harvesting chlorophyll protein complexes to photosystem | and |l
[29]. The green light is possibly absorbed by carotenoids, which are also present in
this strain and have roles in light harvesting and preventing photooxidative damage
[30].

The fluorescence background in the collected spectra has two possible features, one
with a peak at or below 560 nm and the other at > 660 nm (Figure 15, A). The overall

intensity of the background in the spectra increased over time, with the fluorescence <
560 nm increasing more than that at 660+ nm. The peak > 660 nm may be the known
~680 nm peak observed in C. reinhardtii cells due to emissions from photosystem i
[311[32]. Our detection range cuts off at 660 nm, so we can’t define the true lambda
max or peak behavior over time. Similarly, we can’t fully define the lambda max of the
shorter wavelength fluorescence, which could be the tail end of fluorescence
emissions from pigment binding complexes observed in other green algae [33],
another chromophore that emits at this wavelength, or a photodegradation product
that's being produced over time.

We then compared the Raman spectra, separated by baselining the original spectra,
over time (Figure 15, B). We didn't see a notable change in the number of peaks or their
positions, but the intensities decreased over time. This could be due to the increasing
fluorescence background obscuring the Raman signal or possibly actual changes in
the pigments responsible for the prominent Raman peaks. These findings indicate we
can capture dynamic phenotypes with Raman and fluorescence analysis for this and
similar photosynthetic organisms over time. Chlorophyll fluorescence decay in
response to continuous light exposure is well studied. With the addition of Raman
spectroscopy, we can capture changes to chemicals and pigments other than
chlorophyll during this process.

Additional methods

We used ChatGPT to streamline and clarify the text we wrote and quickly test out
different plot ideas by providing spectra and asking for various plot types. We used
GitHub Copilot to help write and clean up code, with it suggesting code and comment
ideas that we then selected from. GitHub Copilot also auto-suggested code for



repeating or modifying sections, especially for generating similar figures with different
data. Additionally, we used Grammarly Business to suggest wording ideas, pick and
choose bits to use, reformat text according to a style guide, and streamline and edit

the text we wrote.

Key takeaways

The key takeaway from this effort is that DIY Raman, specifically this implementation of
the OpenRAMAN (Starter Edition), can acquire high-dimensional compositional and
time-varying data on biological samples, including biomolecules, salts, liquid and solid
cultures of living cells. However, solutions analyzed in either configuration must be
relatively concentrated (1 M) to distinguish multiple peaks. Biological samples give
much more signal when in a solid state (i.e., colonies on a plate) than liquid cultures,
likely because of lower background and higher density. The results correlate well with
published references and appear to be reproducible. Our current hardware, protocol,
and code implementation enables straightforward acquisition, calibration, and data
processing. This low-cost system is helpful for biology and biochemistry laboratory
research and has potential as an easy-to-build tool for rapid phenotyping.

Next steps

The OpenRAMAN system is flexible and can be modified to improve performance and
utility for biological samples. We plan to change it to enable higher throughput
acquisition. The most obvious next step would be to improve the sample end. For
instance, we could include an objective, XYZ-automated stage, and a camera, allowing
for better focusing on a sample and moving from point to point across acquisitions. In
this way, we could map data on samples that are standard formats for biology, such as
colonies on a Petri dish or wells of a multi-well plate. In addition, having automated
metadata saving would help streamline the data collection process.

We're also interested in other upgrades to the system. Adding shutters to control the
light path would be helpful for time-series acquisitions in which we don’t want the
sample continuously exposed to light. Using a laser with more power or a different
wavelength for this system would change how we interrogate the sample. A higher-
powered laser would allow for potentially more signal, and we may be able to include



an objective to focus the beam and improve the spatial resolution further. A different
wavelength, such as 785 nm, could decrease the background fluorescence expected
in biological samples but may have trade-offs in the intensity of the Raman scattering
[34].

One aspect of this study we didn’t fully explore was the behavior of C. reinhardtii cells
over time, given that our detector range didn’t fully capture the major fluorescence
peaks. We're interested in further pursuing this research area and can modify the
system to change our edge filters and alignment to capture a different range. We can
also study cells exposed to different dark and light cycles, overall laser light exposure,
and wavelengths of light. We think this will give us a better understanding of time-
dependent phenotypes in this and related species through combined Raman and
fluorescence spectroscopy.

We'll share updates to our Raman system and its associated protocols and code as we
develop them. We'll also continue to build out our Raman spectral library, focusing on
adding samples relevant to biological research. Please comment on the pub if you've
questions, thoughts, or suggestions! We'd love to hear about your results and feedback
if you use this system for biological research. In addition, we'd like to hear about what
datasets and levels of data processing were helpful for you from this effort.
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