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Automated classification
of time-course imaging
data applied to nematode
embryogenesis

Machine learning is a powerful tool for classifying images in a time
series, such as the developmental stages of embryos. We built a
classifier using only bright-field microscopy images to infer
nematode embryonic stages at high throughput.
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Purpose

We're broadly interested in extracting biological function from label-free, high-
throughput imaging data. As a first pass, we tested the effectiveness of a deep-
learning framework that incorporates temporal information in classifying the
developmental stage of the well-studied nematode, Caenorhabditis elegans. We
trained a classifier that you can use to identify nematode embryo stages from time-
course datasets captured using bright-field microscopy. We hope this tool will be
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immediately useful to interrogate embryonic development, reproductive success, or
developmental outcomes following perturbations in C. elegans or other free-living
nematode species. More broadly, you can adapt our approach to any category of
classifiable microscopy time-course data. To this end, we provide a PyTorch-based
pipeline for training and evaluating your own models.

The tool lets you go from imaging nematode embryos to classifying developmental
stages and quantifying the frequency of successful versus unsuccessful
developmental outcomes. It's about 80% accurate in calling the correct stage. We're
not pursuing this project further but welcome your input and encourage others to
incorporate user feedback to improve the functionality of the classifier if it’s useful to
you.

« Our code in Python is available in this GitHub repository.

« The data we used in our training, validation, and experimentation are on Zenodo.

We’ve put this effort on ice! X

#HStrategicMisalignment

We considered building on this initial effort by predicting likelihood of embryo
hatching, but we'd mostly intended the project as an internal exercise in how to
build and train a classifier on a visual dataset. We ultimately decided that
continuing this particular project wasn'’t a high priority relative to other work.

Learn more about the Icebox and the different reasons we ice projects.

Background

For most organisms, the effort and expense of genetic or antibody-based labeling for
the purpose of imaging is very high, requiring dedicated team effort and resources. We
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want to develop tools that we can readily apply to many organisms, allowing new
understanding of evolutionary solutions to biological problems. In line with this
overarching goal, we set out to leverage the information in label-free images for
phenotyping in a scalable, automated fashion. More broadly, we'd like to understand
the extent to which we can use label-free imaging across as large a swath of the tree
of life as possible to extract phenotypic information and map traits wherever we find

novelty.

Combining deep learning with high-throughput live imaging has the potential for broad
impacts on many fields of biology, scaling from cells to organisms. For example, deep
learning approaches to cell type identification [1][2] and cell health [3] have the
potential to be transformative. Applying these methods to label-free data [4][5][6]
decreases experimental cost and increases our ability to explore organismal diversity.

Developmental biology is ripe for the application of deep learning approaches to
facilitate discovery and unlock translational potential [7]. The study of developmental
biology has provided fundamental insights into multicellular life at the intersection of
genetics, molecular, cellular, and evolutionary biology. Seeing where development
goes awry allows us to understand the molecular underpinnings of disease, from
developmental disorders leading to birth defects [8][9] to the origins of cancer [10].
Not surprisingly, there are concerted efforts at improving the outcomes of in vitro
fertilization by applying deep learning strategies to human embryo health and viability

[11n2].

During embryogenesis, multicellular organisms pass through discrete developmental
stages, including fertilization, cleavage, morphogenesis, and organogenesis,
ultimately hatching into their environment. Animal development is characterized by
sets of shared and species-specific features. For example, following fertilization, most
animal embryos undergo a series of rapid cell divisions. At some point during this
cleavage period, cells undergo a suite of morphogenetic changes as embryo
patterning results in tissue-layer organization through the process of gastrulation.
While embryos from many different organisms may share similar-looking cleavage
stages, within specific lineages there are often unique morphologies characteristic of
distinct taxonomic groups — animal embryos that look similar at cleavage stages
might look very different during gastrulation. These species-specific differences only
compound as development continues. Thus, there is a need for automated tools to
classify key embryonic stages to unlock high-throughput approaches to
developmental biology.



Finally, to fully understand the development of a particular organism, we need to be
both descriptive and mechanistic. The most common way of accomplishing this is by
perturbing the system, from traditional mutagenesis to drug screening. If we can
devise approaches that take advantage of inherent properties, such as the data we get
from label-free light microscopy methods (e.g., bright-field, DIC, phase contrast, etc),
we can maximize our ability to perform these experiments at scale, across the tree of
life, as we don’t have to invest in bespoke genetic labeling tools for each new research

organism.

The strategy

As afirst step toward a longer-term goal of high-throughput image-based phenotyping
across species, we decided to develop an image analysis pipeline for training a neural
network to classify developmental stages with high accuracy and minimal human

intervention from bright-field movies.

We selected the well-studied nematode, Caenorhabditis elegans, as a test case for
automated phenotyping because it has a well-defined embryonic lineage and easily
observable morphological stages, undergoes rapid embryonic development to a free-
living larva, and has a large scientific community that leverages these many strengths
for biological discovery. Despite many differences in early embryo patterning between
nematode species, key developmental stages appear conserved [13][14], so we also
wanted to explore whether a classifier trained on C. elegans development would work
out-of-the-box on related nematode species, unlocking future evolutionary
comparative studies.

The problem

To fully leverage high-throughput experimental approaches that involve imaging, we
need automated image processing and analysis workflows. High-throughput
experiments involving time courses often consist of large (100+ GB) datasets that
require lengthy data curation and annotation before analyses can even begin. We set
out to establish a method for classifying embryonic stages from bright-field image
data; a modality that does not require the use of species-specific labeling tools.



Previous attempts to generate a nematode classifier required technological
innovations in microfluidic approaches to isolate individual embryos and relied on
reporter transgenes to properly orient the embryo [15]. In contrast, we wanted to
create a classifier that performs robustly irrespective of embryo orientation and solely
using bright-field microscopy, to allow for comparative studies in organisms lacking
genetic tools.

Our solution

As a proof-of-principle, we built an automated, high-throughput, experimental, and
computational workflow to image and classify the embryonic stages of C. elegans.

Our workflow includes (1) optimizing high-throughput embryo collection and imaging,
(2) embryo segmentation, and (3) classification of known stages of nematode
development as well as the detection of unfertilized oocytes and embryonic lethality. In
constructing this pipeline, we've built a trained classifier to recognize label-free bright-
field images of C. elegans embryonic stages, based on the original descriptions by
John Sulston (1942-2018), who generated the first embryonic lineage map of a
multicellular organism. We trained a model based on manual ground truth annotations
using the ResNet-18 neural network architecture [16]. Our classifier achieves
approximately 80% accuracy, accounting for class imbalances, for classifying embryo
developmental stages, independent of embryo orientation. To test our nematode
classifier and to extend the utility of this tool, we used it to quantify the embryonic
lethality associated with induced environmental stress from heat shock and osmotic
stress and tested its ability to correctly classify embryonic stages of related nematode

species.

We anticipate that this pipeline will be useful in collecting population-level details
related to reproductive success or embryonic lethality in phenotyping following
perturbation (e.g., RNA interference or traditional mutagenesis screens). More
generally, we're excited by the potential of taking this approach to classify other kinds
of time-course data. We hope you'll be able to apply our workflow for your own time-
course data and would love to hear how it goes, so please drop us a comment if you try
it!



The resource

Building a classifier for nematode embryo
stages

We created a classifier to facilitate the characterization of C. elegans embryonic
phenotypes in high-throughput time-course imaging data. In this pub, we summarize
how we trained our model. We also describe the CLI that you can use to adapt the
model to your imaging data acquired with different contrast, resolution, or
magnification (see pipeline documentation).

This first section provides a brief overview of the workflow (Figure 1), from collecting the
data to using the computational pipeline to classify and extract labeled time-course
data for downstream analyses. To see the classifier in action, jump to “Using_the
classifier for high-throughput studies of nematode development.”
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Overview of workflow to train and use our nematode classifier.

Figure1

(1) We collect embryos by hypochlorite treatment and dispense into
384-well glass-bottom plates (2) for imaging (3). Post-acquisition,
we convert files into the ome-zarr format (4) and then segment and
crop individual FOVs (5) in preparation for ground truth annotation
(6). We then train and validate (7) input data from movies that have
ground truth annotation using a ResNet-18 architecture to generate
a trained classifier (8). A post-processing filtration step removes
transient errors (9) in state calls. We can then process new
experimental data and apply the classifier to that processed data
(10) to generate summary statistics for high-throughput
experiments (11).

Embryo isolation and applying “smart” microscopy
to optimize data collection

We isolated embryos from gravid adults by hypocholorite treatment [17] and added

them to a 384-well glass-bottom plate (Cellvis).

To reduce the collection of empty fields of view (FOVs), we used the “JOBS” function in
Nikon NIS Elements software (version 54203) to perform threshold-based object
detection (Nikon Elements script available here) in a first round of imaging, tiling over
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each well (Figure 2, B). FOVs that passed a minimum object detection criteria (usually >
3 embryos detected) moved to a second round of imaging (Figure 2, C and Figure 3).
We then imaged these embryo-containing FOVs every five minutes for a minimum of
14-16 hours, a length of time that should allow for wild-type C. elegans to hatch into the
L1larval stage [18].

Image in Detect objects

Figure 2

Smart imaging to collect high-throughput nematode

embryogenesis data.

(A) We perform imaging in 384-well plates in a subset of
wells. In this example, the colored wells denote potential
different treatments in a given experiment.

(B) We perform a round of object detection to limit data
collection to FOVs that have a minimum number of
embryos. Example FOV is shown as raw image (top) and
after object detection (bottom), where the dark blue dot
indicates a detected object.

(C) Example FOVs that either fail (X) or pass () object
detection.



Image processing

After image acquisition, we preprocess the raw FOVs to crop around each embryo to
obtain images of uniform size that are centered on a single embryo. This
preprocessing step significantly reduces the complexity of subsequent annotation and
analysis — this two-fold approach transforms the problem of object detection and
classification into the problem of image classification. We segmented the embryos
from the temporal fluctuations in intensity by computing the standard deviation of the
raw bright-field movies across the time dimension, then using Otsu thresholding to
generate a background mask (Figure 3, A). We then filtered the foreground regions in

the background mask using morphological criteria to exclude regions that did not
correspond to a single isolated embryo. Finally, we obtained movies of single embryos
by cropping square bounding boxes of a size equal to the length of the embryos

around each foreground region (Figure 3, B).
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Figure 3

Image processing workflow to generate
single cropped embryo time-lapses.

(A) Example segmentation workflow for an
FOV. We segment data based on standard
deviation over time (left) and perform
smoothening in xy (middle), which results in
detection of a subset of embryos in a given
FOV. Detected embryos are given a unique ID.
As an example, we've numbered starting from
0 in this figure.

(B) Representative, cropped time-lapses from
the FOV in the example shown in (A). Scale
bar, in this and all subsequent images, is 10

pm.

Key frame annotation for ground truth

To build a classifier for nematode embryogenesis, we first had to decide on a core set
of developmental stages that would be useful to encode as ground truth. C. elegans
embryogenesis is highly stereotyped, with a defined cell lineage and rapid
development, as embryos hatch in ~12-14 hours into a motile larval stage (L1). For our
classifier, we selected key developmental stages based on the work of John Sulston



and colleagues, whose groundbreaking efforts led to the first cell lineage map of any
animal embryo [18].

While a rare occurrence in our wild-type imaging, we did observe instances of
unfertilized embryos, likely stemming from a result of the hypochlorite bleaching
treatment or from older hermaphrodites that had exhausted their supply of sperm [19].
In experimental manipulations or in experiments involving aging, we expect that
recording the frequency of unfertilized embryos would be useful, so we annotated
images of unfertilized embryos (Figure 4, A and B.0O). Next, we binned all of the early
cell division events prior to major morphogenetic movements into a proliferation stage,
which would also include all the events associated with gastrulation (Figure 4, A and
B.1). The first major morphogenetic changes in the embryo are observable by bright-
field microscopy imaging restricted to a single z-plane, and happen ~six hours into
development, when the embryo takes on a characteristic bean morphology (Figure 4, A
and B.2). The next characteristic stage in nematode development is the comma phase
(Figure 4, A and B.3), which Sulston et al. precisely defined as “the moment at which
the ventral surface of the tail lies perpendicular to the long axis of the egg” [18]. In our
movies, this stage only represented a 10-minute imaging window (two frames, as our
time interval was five minutes). Shortly after the comma stage, the embryo begins to
move and progresses through three stages, usually defined as one-, two-, and three-
fold. We binned these stages together as the fold stage (Figure 4, A and B.4). Finally,

the larva hatches into its environment, escaping the eggshell, which for purposes of
ground truth training we annotated as hatch either the moment we saw the larvae
escape or more commonly in our imaging data, the first frame without an embryo,

though sometimes the eggshell is visible in the frame (Figure 4, A and B.5).
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Schematic and representative images of the developmental
stages we used to create a nematode classifier.

(A) Schematic and (B) images showing the seven classes we
selected for annotation. We annotated images irrespective of
orientation so our classifier could correctly identify stages in both
lateral and dorso-ventral orientations. White arrows indicate
invagination at the bean stage and yellow arrows indicate the
orientation of the growing tail with respect to the rest of the embryo,
as described by Sulston et al.

To add functionality to our classifier for downstream experiments, we wanted to
annotate images of embryonic lethality or death (Figure 4, A and B.6). We looked
through our original dataset, and not surprisingly, given the high fidelity of C. elegans
embryogenesis [20], we were only able to find two examples (out of 291) of embryos
dying during imaging. In an attempt to generate more images of embryonic lethality,
we heat-shocked wild-type L4 stage animals (the last developmental stage before
becoming gravid adults) at 37 °C for one hour and collected embryos the following day.
However, even in this dataset, we were only able to identify an additional two examples
of “death.”



Rather than troubleshoot heat shock conditions, we decided to use a pharmacological
perturbation strategy to induce embryonic lethality. A previous attempt to build a C.
elegans embryo classifier used several perturbation strategies, including high salt [15].
We found that at 0.2 M NaCl, the concentration used by Atakan and colleagues, we still
observed insufficient incidence of embryonic lethality. Given that Atkan and colleagues
found high embryonic lethality in the context of a microfluidic chamber (in addition to
0.2 M NaCl), it’s possible that this level of lethality (~30%) depended on other
environmental factors in addition to the hyperosmotic stress. In other studies not
utilizing a microfluidics chamber, researchers have used higher salt concentrations to
induce hyperosmotic stress [21]. Thus, we performed an additional round of imaging
using 0.5 M and 0.75 M NaCl. At 0.5 M NaCl, we noticed that many embryos were
arrested during fold stages. At 0.75 M NaCl, we saw pronounced embryonic lethality.
We therefore used images from this 0.75 M NaCl dataset as additional ground truth
annotations for training a classifier to recognize death.

Machine learning using a ResNet-18 architecture to
create a nematode classifier

We trained a ResNet-18 [16] convolutional neural network (CNN) architecture in
PyTorch (Figure 5). We started with a pre-trained ResNet-18 and adapted the model to
our task via transfer learning. We replaced the first convolutional layer to allow for
multiple input channels. We pooled annotated movies of unperturbed, heat-shocked
and osmotically perturbed embryos to train and evaluate a model that generalizes to
diverse perturbations. In order to make the model invariant to orientation and small
differences in the size of the embryo, we augmented the input images with transforms

such as random rotations and random scaling.

We tested several different data transformations when selecting an optimally
performing model, comparing model performance on raw data as input (Figure 5, A
and B) to measures of temporal fluctuations, such as moving average over time and
moving standard deviation over time (Figure 5, C and D). We eventually chose to use

the moving standard deviation and the moving mean with a window size of five frames
(Figure 5, C and D) as encoding temporal dynamics as input data improved stage
classification accuracy for almost all stages as compared to raw data (Figure 5, B and
D). The best-performing model classified most stages (bean, fold, hatch, and death)
with >77% accuracy (Figure 5, D). Confusion resulted during classification of the



comma stage from bean-stage embryos, and, to a lesser extent, between unfertilized
and dead embryos (Figure 5, D).
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Figure 5

Encoding dynamics into a ResNet-18 CNN
improves nematode classifier performance.

We initially trained a ResNet-18 CNN architecture using
raw data as input into the model (A) resulting in a
confusion matrix (B). Ground truth annotations are
shown along the y-axis and classifications along the x-
axis. After testing several different input data
transformations, we found that using the moving
standard deviation and moving mean with a window
size of five frames (C) performed better than using raw
data (A) as inputs into the neural network (see
Materials and methods for additional details), as
shown by a test confusion matrix (D) from annotations
across experiments. The best-performing model (D)
performs at high accuracy for most stages (> 77% for
proliferation, bean, fold, hatch, and death) with poor
performance for comma (47%) and detection of
unfertilized embryos (61%o).



Improving classifier performance with post-
processing

Although our trained network classified developmental stages with reasonable
accuracy (Figure 6, A and A'), we noticed that many of the errors in the classification of
our test data occurred due to transient confusion between non-sequential stages (e.g.,
between proliferation and fold) or confusion between embryonic lethality (death) and
fold stages (Figure 6, B and B'). To correct confusion between non-sequential stages,
we first applied a median filter (using a window size of seven frames) to the classified
stages to remove transient errors. Then, we eliminated developmentally impossible
stage transitions (such as going backward in development or skipping stages). To
eliminate confusion between embryonic lethality and the fold stage, we took into
account the developmental outcome of the individual time-lapse — i.e., if an embryo
hatched successfully at the end of the time-lapse, we eliminated any transitions prior
to the death stage (Figure 6 A' and B'). Overall, post-processing improves stage

classification accuracy for bean, comma, fold and death (Figure 5, D versus Figure 6,
C).

We were unable to perform post-processing on the stages between proliferation and
fold (comma and bean), which represent a period of morphogenesis during C. elegans
development [22]. Confusion between comma and bean is not surprising, as the
comma stage occurs for ~10 minutes, corresponding to ~two frames in our time-lapse
datasets. We used the precise definition of the comma stage established by Sulston et
al. in our classification, but this stage is easily confused with the previous bean stage,
even by a trained human annotator. Combining these two stages into a single
morphogenesis stage, indicative of the cell movements and rearrangements that
occur between proliferation and the fold stage [22][18], would result in > 88%
accuracy (e.g., correct bean ID = 81% + incorrect ID as comma = 7%; Figure 6, C). We
expect that experimentally, it would be useful to broadly classify bean and comma
together, as a means of quantifying phenotypic responses that might result in changes
in some of the major tissue level rearrangements that occur during this phase of
development, including dorsal intercalation and ventral enclosure [22][23].
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Figure 6

Post-processing to improve classification.

(A, B) Example embryo time-lapse movies with classifier

annotations appended to the movie.

(A, B") Corresponding classifications per frame. Blue traces are the
original classifications and orange traces are the post-processed
classifications.

(C) Confusion matrix comparing post-processed annotations to

ground truth annotations for embryos not used during training.

Our code in Python is available in this GitHub repository (DOI:
10.5281/zen0do.10247028).
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Using the classifier for high-throughput studies
of nematode development

Identifying developmental outcomes in high-
throughput imaging experiments

In this section, we summarize the results of using our classifier to aid in the analysis of
high-throughput, time-course imaging data. First, we examined the final state
classifications from imaging wild-type embryos and embryos whose mothers
experienced a brief 37 °C heat shock (Figure 7, A and B). These data supported our
initial observations when we were annotating images for ground truth, as there were
few (1%, n = 3/291 embryos) instances of embryonic lethality in wild-type embryos, and
only a slight increase (8%, n = 11/137 embryos) in embryonic lethality in embryos

following heat shock.
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Classifier identifications of developmental outcomes from
high-throughput imaging.

(A, C) Stacked bar graphs depicting the percentage of embryos per
developmental stage for each experiment [control and heat shock
(A) and osmotic shock experiment (C)]. Color key indicates final
developmental state.

(B, D) Representative frames from individual time-lapses for each
experimental condition, as indicated with final state classification
shown at the end of each image series.

Next, we wanted to analyze the results of the osmotic stress dataset (Figure 7, C and
D), which we performed to collect examples of embryonic lethality (“death”) for our
classifier, given the low occurrence of embryonic lethality in our wild-type and heat
shock datasets (Figure 7, A). To interact with our data visually, we generated a filmstrip
of every 10th frame for every other embryo in our datasets (Figure 8). We treated
embryos with either O M (control), 0.5 M, or 0.75 M NaCl solution and allowed them to
develop for 16 hours. While C. elegans is capable of adapting to high-salt environments
[24][21], embryos treated with high salt solutions without pre-adaptation results in
embryonic lethality at varying penetrances [21][15]. We selected two concentrations,
0.5 M and 0.75 M NaCl, as these treatments robustly resulted in embryonic



phenotypes during our imaging. Our classifier was able to identify developmental
outcomes from this perturbation experiment (Figure 7, C). Specifically, we observed
that embryos treated with 0.5 M NaCl either arrested in the fold stage (48%, n = 76/158
embryos) or died (37%, n = 58/158 embryos) during the time-lapse. At higher salt
concentration (0.75 M NaCl), the majority of embryos died during imaging (81%, n =
129/160 embryos).
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Figure 8

Micrograph time series data from the
osmotic shock experiment.

We extracted every tenth frame from the
time-course experiment where we
exposed C. elegans embryos to O (green),
0.5 M (gold), and 0.75 M (purple) NaCl.

Reliably classifying other nematode species requires
species-specific ground truth annotations

As afinal test of our nematode classifier, we imaged embryonic development of two
additional species of free-living rhabditid nematodes: an additional Caenorhabditid
species, Caenorhabditis portoensis, and a more distantly related species, Oscheius
tipulae (Figure 10, A, phylogeny based on [15]). We annotated 15 movies (Figure 9, B for

representative images) of each species and used the trained model to classify the
images from these experiments. The original model performed well at classifying
proliferation (90% for C. portoensis, 92% for Q. tipulae), fold (78%, 94%) and hatch
(100% for both) in these data, but, as was the case with the C. elegans data, struggled
to correctly classify morphogenesis stages [bean (22%, 48%) and comma (15%, 7%)]
(Figure 9, C). During annotation, we noticed that O. tipulae failed to hatch during the
imaging window of 16 hours. These data support observations that O. tipulae develops
at a slower rate than C. elegans [25], accounting for the absence of hatch in our
confusion matrix (Figure 9, C).

Given the low performance and high confusion on morphogenesis stages (bean and
comma) we next asked if we could improve classification by training a model that
included ground truth annotations of data from the other two nematode species. We
retrained the network with this additional data, and performance for all stages
increased (e.g., bean correctly classified at 80% and 71% in C. portoensis and O.

tipulae, respectively; Figure 9, C).
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Extending our classifier to other nematode species.

(A) Phylogenetic relationship of the three nematodes studied in this
project.

(B) Representative time-lapse images from each species, shown as
a filmstrip containing every 10th frame of the original cropped

movie.

(C) Confusion matrices for each species based on a classifier
model trained only on C. elegans (left) and a new model trained on
ground truth annotations from the additional nematode species
(right).

Finally, we asked whether our model trained with images from additional nematode
species performed better or worse when classifying our original C. elegans data. The
addition of images for other nematode species resulted in improved performance for
some of the stages, specifically proliferation (83% to 91%) and death (79% to 94%)
(Figure 10, A-B). While there was improvement at classifying comma stage (47% to
65%), identification of the bean stage was poorer in the general model (77% to 56%)
(Figure 10, A-B).

We're interested in seeing if these trends might improve with the addition of more
data, and have included all of the documentation necessary to train new models. If you
want to classify developmental outcomes from your own high-throughput imaging



experiments, we suggest using the model trained on all three species, as it performed
better at classifying hatch and embryonic lethality (death).
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Figure 10

A more general model improves classification
accuracy of C. elegans images.

Confusion matrices of validation data for the
original network trained on only C. elegans images
(A) versus the network trained on C. elegans and
the two additional nematode species (B).

Materials and methods

Species and strains

The following strains were used in this study: C. elegans: N2 (wild-type), DQM327
(bmd75[eef-1A.1p::his-58::dendra::3xHA::tbb-2 3'UTRY]) I; cpls80 [eef-1A.Tp::mKate2-
Cl:mKate2-GLO::PH::3xHA::itbb-2 3'UTR] Il. O. tipulae: CEW1. C. portoensis: EG4788.
We maintained all nematode strains used in this study on 60 mm NGM plates on an
OP50 E. coli lawn using standard methods [26].



Embryo isolation

We isolated nematode embryos by hypochlorite treatment of a minimum of three 60
cm NGM plates of gravid adults using a standard protocol [17]. Briefly, we washed
gravid hermaphrodites off NGM plates using M9 media, then concentrated and
treated with hypochlorite for 6-8 min, then washed repeatedly with M9 to remove the
unreacted hypochlorite. To concentrate embryos following the final M9 wash for
dispensing into 384-well plates for imaging, we decanted the M9 wash and examined 1
pl of embryo suspension. Our target concentration was ~50-75 embryos/yul. If too
concentrated, we added an appropriate volume of M9, usually ~50-100 pl. We added 1
pl of embryo suspension to individual wells in a 384-well glass-bottom plate (Cellvis)
containing 50 ul of M9 per well. For hyperosmotic perturbation experiments, we added
embryos to the appropriate NaCl concentration (0.5 M or 0.75 M). To disperse embryos
throughout the well, we gently pipetted the suspension up and down using a 200 ul
pipette. We settled embryos to the bottom of the well in preparation for imaging by
performing a brief centrifugation (1 min, 600 x g) in a table-top centrifuge (Sorvall X Pro
Series) at room temperature (~21°C).

Microscopy

We performed all imaging experiments on a Nikon Ti2-E compound inverted
microscope, equipped with an ORCA-Fusion BT digital sCMOS camera and configured
for widefield imaging. We collected all data using a Plan Apo 20x 0.75 NA Air objective.
We performed acquisition using High Content Analysis NIS-Elements software (version
54203). We performed object detection to select FOVs that contained a minimum
number of embryos by designing a custom JOBS script to perform thresholding (script
available here). Following tiled scans of wells containing embryos, we then imaged
FOVs that met the object detection criteria every five minutes for 14-16 hours, to allow
for embryos to complete development and hatch as L1 larvae.

SHOW ME THE DATA: All of the cropped images used in this pub are available
on Zenodo (DOI: 10.5281/zenodo.10211684)



https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/main/microscopy
https://www.doi.org/10.5281/zenodo.10211684

Image processing and model training

We performed all image processing in Python. Briefly, we converted raw images from
each dataset from Nikon's ND2 format to Zarr format, cropped embryos from each raw
FOV, and calculated the moving mean and moving standard deviation for all cropped
embryos.

We used PyTorch with PyTorch Lightning to facilitate dataset loading and model
training. We wrote a custom dataloader to aggregate the time-lapse frames from all
annotated cropped embryos and split the aggregated frames (from 95 C. elegans
movies) into training, validation, and test sets. After training, we used the model
checkpoint with the highest validation accuracy to infer (use the tool to provide a best
guess for) stage labels for all cropped embryos. Finally, we post-processed the inferred
labels (as described in Figure 6) to generate the final summary statistics shown in
Figure 7. To calculate the confusion matrices, we generated an independent set of
manually annotated embryos (from 55 C. elegans movies and 15 movies from C.
portoensis and O. tipulae) that were not among the embryos used during training. For
re-training a network on all three species of nematodes, we annotated additional
frames (from 15 movies per species) for training, validation, and test sets as above.

All our code in Python and additional documentation is available in this GitHub
repository (DOI: 10.5281/zen0d0.10247028).

We wrote a separate CLI script to perform each of these steps (e.g., ND2 conversion,
embryo cropping, model training, label classification, post-processing, etc). Please
see the README in our GitHub repo for more details and examples of how to use each
of these scripts. We used ChatGPT and GitHub Copilot to write some code.

We added timestamps for figures using a Napari plugin (napari-timestamper).

Key takeaways

We trained a ResNet-18 neural network to identify key developmental stages of
nematode embryos and classify endpoint results from high-throughput imaging
experiments, distinguishing between embryonic lethality and successful hatching. We


https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://doi.org/10.5281/zenodo.10247028
https://github.com/Arcadia-Science/2023-nematode-embryo-classifier/tree/v1.0
https://socket.dev/pypi/package/napari-timestamper

chose a deep learning model that relied on supervised learning and human annotation
of key frames, but trained a model that took advantage of the dynamic nature of the
time-course data. While the model performed well at identifying most of the
developmental stages as well as classifying lethality and hatching, we found it
classified the subtle differences that make up the key morphogenesis phases of
nematode development less robustly. Finally, we found that we needed to add image
data from other species to train a new model that could perform well in identifying
stages of nematodes beyond C. elegans.

We hope that C. elegans researchers who want to phenotype mutants at scale or use
forward or reverse genetic approaches at high throughput will find this tool useful.
More broadly, we hope that our workflow and approach might be useful to anyone
wanting to apply deep learning to time-course data.

Next steps

While we're not pursuing this work further, as our scientific strategy has shifted, we'd be
interested in hearing whether this approach is useful for building classifiers for other
time-course imaging data. We hope that the basic tools we’ve included in our GitHub
repository will be a useful starting point for anyone interested in building a classifier

with their own imaging data. We're particularly curious if researchers who would find
this tool useful for their own science have the required computational expertise to use
it based on the documentation we’ve provided. If you do use this resource, we'd love to
hear about your experience.
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