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Using protein language
models to predict coding
and non-coding
transcripts with pim-utils

We explored the use of embeddings from protein language models
to distinguish between genuine and putative coding open reading
frames (ORFs). We found that an embeddings-based approach
(shared as a small Python package called plm-utils) improves
identification of short ORFs.
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Purpose

We're interested in detecting small open reading frame (sORF)-encoded, bioactive
peptides in transcriptomes. sORFs are open reading frames that contain fewer than
300 nucleotides and often use alternate start codons. Computationally detecting real
sORFs is challenging, and we wanted to more accurately detect sORFs that encode
functional peptides.
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We hypothesized that latent information in the embeddings of large protein language
models might contain information about the coding propensity of amino acid
sequences, even though this wasn't the original use case for such models. We were
encouraged toward this line of thinking because other peptide classification tools that
identify cleavage peptides [1] and predict peptide bioactivity [2] have successfully
used large protein language models to improve classification accuracy.

We conducted multiple tests across different datasets and observed increased
accuracy over leading tools when we applied these innovations to predicting sORF
coding potential. On all transcripts from a set of 16 diverse research organisms, our
tool performed comparably to the leading tool, RNAsamba. However, our method
significantly outperformed that tool for short sequences. Additionally, on the
RNAChallenge dataset, where most tools struggle, we achieved an accuracy of 33%
compared to the average tool accuracy of 11%. While our approach improves accuracy
on this challenging prediction task, the overall accuracy indicates that there's still work

to be done.

We packaged our approach as a small Python package called “plm-utils.” Using the
Python package infrastructure improved the usability and portability of our tool and will
allow us to expand the package in the future if it proves useful.

« This pub is part of the project, “Software: Implementing useful and innovative

computing.” Visit the project narrative for more background and context.

« The plm-utils Python package is available in this GitHub repository.

- The code to train and evaluate the sORF pIm-utils model is available here.

The context

Advances in ribosome profiling and mass spectrometry have experimentally
demonstrated that some small open reading frames (sORFs) are not random
sequences in genomes but lead to functional products [3]. This has spurred a greater
appreciation for and interest in the coding potential of SORFs. Most genomes encode

many sORFs, only a fraction of which are transcribed and even fewer translated. Most
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transcribed sORFs occur in the 5" or 3 UTR of the main coding domain sequence in a
transcript and perform a regulatory role by impacting the translation of the mRNA [4].
However, some sORFs encode translated peptides with functional roles as small
proteins. The majority of sORFs that encode peptides have been identified in
presumed long non-coding RNAs [4][5], although some have also been found
upstream of, downstream of, and overlapping with, transcripts with longer coding
domain sequences [4].

sORFs are alternately referred to as “short” open reading frames [6], while functional
peptide products are referred to as sORF-encoded polypeptides (SEPs or sPEPSs),
microproteins, or micropeptides [7]. These peptides are genomically encoded by open
reading frames of fewer than 300 nucleotides (100 codons) and are synthesized via
DNA transcription and ribosomal translation. Most sORFs use codons that differ from
the traditional start codon (AUG) by one nucleotide (UUG, CUG, GUG, and ACG) [8].

Historically, sSORFs have been underrepresented in protein annotations [9]. sORFs
occur frequently throughout genomes, so several heuristic filters are used in tools that
predict protein-coding regions to reduce false-positive annotations [7]. These filters
include length cutoffs of 300 nucleotides [10] and the use of the AUG (ATG) start
codon [11]. Both of these filters preclude the computational annotation of sORFs
because sORFs are shorter than 300 bases and the majority start with non-AUG start
codons [8][9].

The current tool space

Many computational tools have been developed to identify SORFs in sequencing data.
The maijority perform sORF discovery on either genome or transcriptome assembilies.
These tools generally use evolutionary signatures or sequence heuristics to classify
coding versus non-coding sequences.

Tools like phyloCSF [12], PhastCons [13], and micPDP [14] use genome alignments
and codon substitution patterns to identify sORFs. The three main limitations to these
tools are the requirement for a genome assembly, the lack of built-in evidence that the
predicted sORF gets transcribed, and dependence on cross-species conservation (in
some species, SORFs encode evolutionarily young proteins that aren’t conserved in
other species [6]).



The other common strategy for computational sORF identification is to predict
whether a transcript (or an ORF predicted on a transcript) is coding or non-coding.
These tools either use heuristics like codon substitution and nucleotide composition
or train machine learning algorithms to predict whether a transcript or an ORF contains
a coding sequence. Some tools, like MiPepid or sORFfinder [15][16], are trained
specifically on short sequences, while others, like RNAsamba and DeepCPP [17][18],
are trained on all transcripts but perform well on sORFs. In both cases, these models
often struggle with small training datasets or heuristics that do not generalize to other

species or sequence types [19].

Our approach

Foundational models of proteins like AlphaFold2 [20] and Evolutionary Scale Modeling
(ESM) [21] have revolutionized computational approaches to protein research [22].
Protein language models are trained on large numbers of protein sequences and other
information like multiple sequence alignments or protein structures. After “learning”
patterns in this original data, a model can ingest new protein sequences and relate
them to the existing information in the model in a process called embedding. In the
case of ESM, an embedded protein sequence is represented as a numerical vector,
typically a high-dimensional array of floating-point numbers. While embeddings are
not directly interpretable by humans, they capture information about the structure of a
protein, including orthogonal attributes that correlate with structure, like function [21]
[23][24].

We wrote a Python package called plm-utils (short for protein language model utilities)
that provides a basic set of tools for generating and analyzing embeddings of protein
sequences using pre-trained protein language models. It currently only works with
ESM2 models, but we may expand it in the future if doing so opens new use cases. If
other protein language models would be helpful in your research, please let us know by
commenting here or posting an issue on the plm-utils GitHub repository.

While we set this package up as a general tool for using the information in protein
language models to improve protein prediction tasks, we developed it specifically to
predict whether a transcript is coding or non-coding. We posited that there may be
latent information in protein sequences that is not currently used by other tools. This
information could be extracted by protein language models, which might help in the
classification of coding transcripts. We thought this might particularly be true for
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sORFs because embeddings of protein language models have helped improve other
difficult tasks with peptides like predicting cleavage peptides [1] and annotating
peptide bioactivity [2].

The resource: plm-utils

The plm-utils Python package is available in this GitHub repository (DOI:
10.5281/zen0do.12775178).

PIm-utils is a small Python package that includes functions for working with protein
language models. Currently, it contains code for building binary classifiers from labeled
data using ESM2 embeddings. It also contains helper functions for our first use case,
predicting whether a transcript is coding or non-coding.

First use case: predicting coding vs. non-
coding transcripts

For the task of classifying coding vs. non-coding transcripts, pIm-utils first uses orfipy
to find and translate the longest open reading frame on each contig [25]. PIm-utils
considers multiple potential start codons (AUG, UUG, CUG, GUG, and ACG) as ORFs in
general and sORFs in particular can use any of these [8][26]. After translating all
possible ORFs, we retain only the longest putative ORF from each transcript, assuming
that this ORF is the one most likely to be genuine and encode a bioactive protein. Next,
plm-utils embeds the putative translated ORF sequences in the ESM2 model
embedding space (esm2_t6_8M_UR50D). PIm-utils then uses these embeddings and
ground-truth labels to train a random forest classifier. In this case, a classifier is trained
to predict whether the ORFs were translated from a coding or non-coding transcript.
This results in a model that predicts whether a given amino acid sequence represents
a genuine ORF. In more precise terms, the model classifies a given amino acid
sequence as “coding” or “non-coding” based on its similarity to the longest ORFs
derived from the coding and non-coding transcripts in the training dataset. The
primary output of pIm-utils is a TSV indicating whether a transcript is coding (positive)
or non-coding (negative).
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To apply this approach to sORFs specifically, we added a length filtering step after ORF
prediction and before embedding and coding vs. non-coding classification.

Throughout this pub, we evaluate the capacity of pim-utils to differentiate between
coding and non-coding transcripts, serving as a preliminary test of its effectiveness. To
conduct a thorough assessment, we developed several models. The performance of
each model varies depending on the specific attributes of the training data. This
means that a model trained on all coding ORFs in a transcriptome will perform
differently than a model trained on only sORFs. However, every model created using
plm-utils is compatible with any sequencing data that ESM can process (the maximum
sequence length ESM2 can handle is 1,024 amino acids).

Potential future use cases

We set up the plm-utils Python package so that it can be easily adapted to future use
cases. At the moment, we have building blocks in place for embedding sequences,
training, and making predictions from a binary classifier. We think this setup could be
well suited for predicting whether a protein has a specific function or for predicting
traits of a protein such as whether it is membrane-bound. Users would first need to
build a new model using labeled training data for new use cases. This model could

then be used to predict the traits of new, unseen data.

If you have a use case that would require additional functions in the plm-utils package,
we would love to hear your needs either as a comment on this pub or as an issue on
the GitHub repository.

Pim-utils is better at classifying short coding
sequences than RNAsamba

To assess whether protein language models improve the classification of coding
sequences over existing tools, we first compared the performance of plm-utils models
against RNAsamba models (version 0.2.5). We chose to compare against RNAsamba
because it performed well across various prediction tasks when benchmarked against
other tools [19].
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To assess model performance with diverse sequencing data, we selected a set of 16
species (Table 1) for which high-quality annotated reference transcriptomes were
available on Ensembl. We then trained models separately on transcriptomes from each
of the 16 species using the above-mentioned procedure. We used each of the
resulting 16 models to make predictions for each of the other 15 species. Note that we
did not split the transcriptomes into training and test sets; we trained models on all
transcripts from one species and then made predictions for all transcripts from each
of the other species.



. - Common .
Species Abbreviation name Kingdom | Class
Apis mellifera Amel Honey bee Animals Insects
Arabidopsis thaliana Atha Thale cress Plants Eudicots
Caenorhabditis Cele Roundworm | Animals Chromadore
elegans
Dictyostelium . .
discoideum Ddis Slime mold Protozoa Mycetozoa
Drosophila Dmel Fruit fly Animals Insects
melanogaster
Danio rerio Drer Zebrafish Animals Ray-finned fi:
Gallus gallus Ggal Chicken Animals Birds
Homo sapiens Hsap Human Animals Mammals
Mus musculus Mmus Mouse Animals Mammals
Oryza indica Oind Rice Plants Monocots
Rattus norvegicus Rnor Rat Animals Mammals
Saccharomyces Baker’s .
cerevisiae Scer yeast Fungi Saccharomy:
Schizosaccharomyces Spom Fission Fungi Schizosacch
pombe yeast
Tetrahy mena Tthe Ciliate Protozoa Ciliates
thermophila protozoan
Xenopus tropicalis Xtro Western Animals Amphibians
p p clawed frog P
Zea mays Zmay Corn Plants Monocots
Table 1

Species used to train and evaluate pim-utils and RNAsamba models in the

task of predicting coding versus non-coding transcripts.

We performed this procedure for both plm-utils models and RNAsamba models. We

calculated the performance of each model using Matthew’s correlation coefficient, a

measure that quantifies the quality of binary classifications, ranging from —1 (perfectly



wrong; worse than random) through O (no better than random) to +1 (perfect
prediction). The RNAsamba models (average MCC 0.51) slightly outperformed the plm-
utils models (average MCC 0.43) when trained and evaluated on all transcripts (Figure
1, A and C). However, the plm-utils models (average MCC 0.52) significantly
outperformed the RNAsamba models (average MCC 0.15) when the models were
trained and evaluated only on transcripts whose longest putative ORF was an sORF (<
100 amino acids) (Figure 1, B and D).
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Figure 1

Comparison of species models trained by RNAsamba (A, B) or plm-utils (C,
D).

(A-D) Heatmaps of Matthew’s correlation coefficient (MCC) depicting the
performance of models trained with whole transcriptomes or short sequences (<
100 amino acids) alone. Model performance is plotted as 16 x 16 heatmaps in
which the x-axis corresponds to the species on which the model was trained and
the y-axis to the species on which model performance was evaluated. Higher
values (dark green) indicate more accurate predictions, while lower values (white)
indicate less accurate predictions.

(E-F) We subtracted the MCCs ( plm-utils MCC — RNAsamba MCC )to compare
the two approaches. Positive values (purple) indicate when plm-utils performed
better. While the two tools performed similarly for the general task of predicting
coding versus non-coding sequences, plm-utils outperforms RNAsamba for
predicting short coding sequences.

Our experimental setup comparing plm-utils and RNAsamba has two differences that
arise because the tools work differently. First, the models don’t use the same
sequence data to make predictions. Although both models predict whether a
transcript is coding or non-coding, the pIm-utils models do so based on the amino-
acid sequence of each transcript’s longest putative ORF. In contrast, the RNAsamba
models do so based on the full nucleotide sequence of the transcript itself. Second,
the pIm-utils models incorporate a correction for class imbalance (unequal numbers of
coding and non-coding transcripts in the training data) by using a balanced class
weight in the random forest classifier. This ensures that both classes are treated
equally despite their unequal proportions. The RNAsamba models don't include this
correction. Because many species contain relatively few coding transcripts whose
longest ORF is an sORF, this difference likely partially explains the difference in
performance we observed between plm-utils and RNAsamba models trained only on
transcripts whose longest putative ORF was an sORF. In addition, embedding sORFs
using ESM allows plm-utils to take advantage of information in a larger corpus of
protein sequences, even when there are very few input sequences.



Pim-utils generally predicts coding vs. non-
coding sORFs more accurately than other tools

Next, we assessed how well pim-utils performed on a challenging prediction task
compared to other tools. A recent large-scale benchmarking study identified 27,283
transcripts (16,243 coding; 11,040 non-coding) that were challenging for many tools to
classify as coding [19]. The authors named the dataset “RNAChallenge” and observed
an average accuracy of 10.8% (Figure 2). The protein-coding transcripts in this dataset
are shorter than the average transcript: approximately 80% of the ORFs on the
protein-coding transcripts were less than 300 nucleotides long, highlighting that most
tools struggle with classifying sORFs as coding or non-coding.

We first built a model to predict coding versus nhon-coding transcripts using diverse
species input. Using the same species listed in Table 1, we separated coding from
non-coding transcripts. We reduced homology between our input sequences by
clustering at 80% sequence identity using MMseqs2 (version 15.6f452) [27]. We then
used plm-utils to translate sequences, limiting to sORFs by filtering to transcripts with
a maximum predicted ORF of < 100 amino acids. We then embedded these
sequences and trained a model. We ran the pIm-utils model on the RNAChallenge
dataset and calculated the performance (Figure 2). The F1 score, a metric that
balances precision (the accuracy of positive predictions) and recall (the ability to
identify all actual positive cases), is the highest for pIm-utils. However, the
RNAChallenge dataset contains some sequences that are highly similar to some
sequences that we used to train the plm-utils model. While this was also true for
models and tools evaluated by the benchmark, we wanted to control for this in our
evaluation. We therefore removed sequences from RNAChallenge that were at least
80% similar to sequences used during training. This reduced the RNAChallenge
dataset to 16,180 sequences (8,847 coding; 7,333 non-coding). Evaluating the
performance on this dataset, the F1 Score decreased by ~6%. PIm-utils still
outperformed all but two tools covered in the benchmarking paper, longdist and

NCResNet (Figure 2) [28][29]. Both of these tools performed poorly on other

benchmarks that assessed their ability to predict coding vs. non-coding transcripts in
non-human species (regardless of transcript or ORF length) [19]. This likely indicates
over- or under-fitting to the RNAChallenge dataset and an inability to generalize well
across diverse biological datasets [19]. While we haven’'t compared directly, we expect

plm-utils to perform better across species and sequencing contexts.
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Additional validation

We built a pipeline, peptigate, that predicts and annotates peptides from
transcriptomes [31]. Peptigate uses plm-utils to predict sORF-encoded peptides.
While evaluating this pipeline, we ran plm-utils on the human transcriptome to identify
sORF-encoded peptides. We compared these results against orthogonal datasets like
databases of known peptides, ribosomal profiling, and strength of translation initiation
site sequences. We found orthogonal support for 22% of pIm-utils predictions and
didn’'t detect any false positives (true non-coding sequences predicted to be coding).

For more insights on plm-utils outputs and predictions, view those results here.

Methods

We used ChatGPT and GitHub Copilot to help write, clean up, and add comments to
our code. We also used ChatGPT to suggest wording ideas and then chose which

small phrases or sentence structure ideas to use.

Key takeaways

The plm-utils Python package is available in this GitHub repository.

« The plm-utils Python package encodes a set of helper functions for working with
protein language models. It currently only works with Evolutionary Scale Model
(ESM), a protein language model trained on millions of protein sequences. It has
functions to embed sequences in ESM2, train a binary classifier using labeled

protein sequences, and predict the classification of new proteins using that model.

« Our first use case for plm-utils is predicting whether a transcript is coding or non-
coding. We used plm-utils to predict coding versus non-coding transcripts in
general, as well as when the transcript encodes an sORF. sORFs are small open

reading frames of less than 300 bases that sometimes encode peptides.

« In a set of diverse research organisms, plm-utils is outperformed by the state-of-
the-art tool RNAsamba for the general task of predicting coding versus non-coding

transcripts [pIm-utils Matthew’s correlation coefficient (MCC) = 0.43; RNAsamba
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MCC = 0.51]. However, plm-utils significantly improves prediction when the
transcript encodes an sORF (pIm-utils MCC = 0.52; RNAsamba MCC = 0.15). This is
likely due, in part, to latent information captured by protein language models.

« PIm-utils also improves the prediction accuracy (33%) on a challenging dataset,

RNAChallenge, over most tools (average 11%).

Next steps

While plm-utils improves prediction accuracy over most tools, predicting the coding
potential of short sequences (< 100 amino acids) remains challenging. We would love
feedback or ideas on how to improve accuracy in this task, with or without using
protein language models.

We have several ideas to potentially improve accuracy:

1. Using larger models: We currently use the smallest model
(esm2_t6_8M_UR50D), but there are larger models available
(esm2_t48_15B_UR50D, esm2_t36_3B_UR50D, esm2_t33_650M_UR50D,
esm2_t30_150M_UR50D, esm2_t12_35M_UR50D). Other prediction tasks on
peptides haven’t seen improved accuracy with larger ESM models [2]. In
preliminary testing, we didn’t see an improvement in accuracy for sORF coding

prediction, but this should be more extensively tested and validated.

2. Exploring ESM3: The newly released ESM3 model [32] may offer potential
improvements. ESM2 was trained on 49.9 million protein sequences from
UniRef50 [33][34], while ESM3 was trained on 2.78 billion protein sequences [32].
These new sequences may improve ESM’s ability to encode information about

short sequences.

3. Refining training data sources: We used Ensembl for labeled training data
(coding vs. non-coding transcripts). Some transcripts initially labeled as non-
coding are later found to encode sORFs [35][36][37][38][39]1[40]1[41][42][43].
Building models that only include validated coding and non-coding transcripts
from diverse sources could improve model accuracy. However, this type of

curation task would likely take a substantial amount of time.



In the meantime, we plan to use pim-utils to identify SORF-encoded peptides in
transcriptome assemblies using the peptigate pipeline [31].
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