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PreHGT: A scalable
workflow that screens for
horizontal gene transfer
within and between
kingdoms

Horizontal gene transfer (HGT) is the exchange of DNA between
species. It can lead to the acquisition of new gene functions, so
finding HGT events can reveal genome novelty. preHGT is a pipeline
that uses multiple existing methods to quickly screen for transferred
genes.
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Purpose

Horizontal gene transfer (HGT) is the exchange of DNA between an organism and
another organism that is not its offspring. It can lead to the rapid acquisition of novel
functional traits in the recipient species, leaving distinctive genomic patterns behind in

the process. While not all HGT events are maintained in a genome or lead to adaptive
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benefit, looking for patterns of HGT across a diverse array of organisms is one way we
can survey for functional novelty. Many tools exist for computational discovery of HGT
events from genome sequencing data, targeting different genomic patterns and with
varying sensitivity, specificity, speed, and scalability. We designed the preHGT pipeline
to be a flexible and rapid tool for pre-screening genomes for HGT events. Our goal was
to create a pipeline to screen for putative HGT events in as many genomes as are
publicly available, or that become available in the future. We wanted an approach that
could successfully screen eukaryotic, bacterial, and archaeal genomes and that could

screen for transfer events between closely or distantly related species.

The preHGT pipeline uses multiple existing methods for HGT screening and the
elimination of false positives. It quickly produces a candidate list of genes that
researchers can further investigate with more stringent HGT detection methods,
different data modalities, or wet lab experimentation.

We hope this pipeline will be useful to researchers interested in exploring HGT in

RefSeq or GenBank genomes.

- This pub is part of the platform effort, “Software: Useful computing at Arcadia.” Visit

the platform narrative for more background and context.

. The preHGT pipeline is available in this GitHub repository.

The context

Adaptation and evolutionary innovation often occur through vertical inheritance and
gradual evolutionary processes. Lateral transmission of genomic sequences via HGT
is a contrasting evolutionary process that occurs between species instead of from
parent to offspring. When genes are transferred, HGT can be a source of rapid
functional innovation. Not all HGT events lead to adaptation — some may be neutral,
detrimental, or may not be maintained by natural selection and are subsequently lost
[1]. Nevertheless, HGT has been the underlying mechanism for many functional
adaptations [2][3].
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HGT occurs across all domains of life with different frequencies and via many different
mechanisms [4][5][6]. In bacteria, HGT most frequently occurs via transduction,
conjugation, or transformation. As asexual reproducers with dedicated machinery for
HGT, horizontal transfer is one of the most prominent mechanisms for quickly
generating genetic diversity. This can catalyze rapid evolution and adaptation to
different environmental conditions [3]. However, bacteria also combat HGT by
degrading foreign DNA with restriction enzymes and CRISPR [7][8]. Although
eukaryotes can undergo HGT through transposable elements, hybridization, and viral
transfer, the rate of HGT is relatively low compared to bacteria [5]. This is in part due to
structural barriers such as the nucleus that impede the transfer of foreign DNA into the
recipient's genome. In sexually reproducing eukaryotes, the frequency of successful
horizontal transfer is further reduced because foreign genomic material must reach
germline cells to be transmitted from parent to offspring [9].

Surprisingly, HGT events leave behind similar signatures in recipient genomes
independent of the domain of life in which the transfer event occurred. When a gene is
transferred, the gene has a different evolutionary history than that of other genes in the
recipient's genome. This manifests in different ways depending on how closely related
the donor species is to the recipient species. The transferred gene may conserve the
function of the gene in the donor genome, may carry a transfer-associated gene
annotation, may be abnormally distributed in the species pangenome, or may deviate
from species-specific expectations in GC content or other characteristics [10]. The
strength of these signals often depends on how much time has passed since the
transfer event. Transferred DNA undergoes a process called amelioration, whereby the
sequence accumulates mutations over time and becomes less and less
distinguishable from the recipient’s genome and more and more different from the
donor’s genome [10]. Other evolutionary processes can further scramble the strength
or clarity of a transfer event signature. For example, if many speciation events
occurred since the time of the transfer event, it may be difficult to determine whether a
horizontal transfer event occurred or if the incongruent evolutionary history is due to
other evolutionary processes such as incomplete lineage sorting [11]. If multiple
transfer events of the same gene have occurred, or if there have been gene
duplications and losses post-speciation, the evolutionary history of a gene may be
even more difficult to disentangle. Lastly, convergent evolution and genome
contamination can confound HGT discovery by genome sequence analysis as these
processes can leave behind similar genomic signatures as bona fide HGT events [12]

[131[14].



Given this variation, detecting HGT in genome sequence data can be difficult, or at the
very least, may require multiple strategies to find different types of transfer events.
Luckily, researchers have developed many computational methods to interrogate the
genomic signatures left behind in genome sequence data by HGT in different ways
(Table 1). These methods fall into two general categories: parametric and phylogenetic

[10].



Tool

Category

Taxonomic
scope

Event
scope

Summary

Alien_hunter

[15]

Parametric

Bacteria &
archaea

Composition

Interpolated
variable order
motifs from
compositional
biases to
identify and
predict
horizontally
transferred
regionsin
genomic
sequences.

Alienness

[16]

Phylogenetic
implicit

All

Kingdom

Measures alien
index and HGT
score from
BLASTp results
on aweb
server.

APP
[17]

Phylogenetic
implicit

Bacteria

Pangenome

Alienness by
Phyletic
Pattern;
Phyletic
pattern of
query gene
distribution in
closely related
genomes.

AnGST
[18]

Phylogenetic
explicit

All

All

Analyzer of
Gene and
Species Trees;
Compares
gene trees to
species trees
and identifies
discrepancies
under a
generalized
parsimony
criterion.

AvP
[19]

Phylogenetic
explicit

All

All

Alienness vs
Predictor;
Finds
homologous
sequences,
produces
multiple



Tool

Category

Taxonomic
scope

Event
scope

Summary

alignments,
and constructs
a phylogeny to
analyze the
topology for
HGT.

BLAST2HGT
[20]

Phylogenetic
implicit

All

Kingdom

Measures alien
index, donor
distribution
index, and bit
score
differences
from BLASTp
results.

DarkHorse
[21]

Phylogenetic
implicit

All

Kingdom,
sub-
kingdom

Measures
lineage
probability
index from
BLASTp
results.

GeneMates
[22]

Phylogenetic
implicit

Bacteria

Pangenome

Network
analysis from
gene
presence-
absence and
SNP variants.

GIPSy
[23]

Parametric,
phylogenetic
implicit

Bacteria

Composition

Genomic
Island
Prediction
Software;
Predicts
genomic
islands using
features such
as abnormal
GC content
and presence
of mobility
genes.

HGT-DB
[24]

Parametric

Bacteria &
archaea

Composition

A database of
potential HGT
events
detected using
deviations in
GC content
and codon and



Tool

Category

Taxonomic
scope

Event
scope

Summary

amino acid
usage.

HGT-Finder
[25]

Phylogenetic
implicit

All

Sub-
kingdom

Measures
transfer index
from BLASTp
results.

HGTector
[26]

Phylogenetic
implicit

All

Sub-
kingdom

Measures
likelihood of
HGT from
between self
and close &
distal groups
from BLASTp
results.

HGTphyloDetect
[27]

Phylogenetic
implicit,
phylogenetic
explicit

All

All

Measures alien
index and
out_pct from
BLASTp
results,
followed by
phylogenetic
inference on
initial
candidates.

HGTree
[28]

Phylogenetic
explicit

Bacteria &
archaea

All

A database of
potential HGT
events inferred
using tree
reconciliation.

Islander
[29]

Parametric

Bacteria

Bacteria

Targeted
identification of
tDNAs.

IslandHunter
[30]

Parametric

Bacteria

Composition

Predicts
genomic
islands using
features such
as abnormal
GC content
and presence
of mobility
genes.




Tool

Category

Taxonomic
scope

Event
scope

Summary

IslandPath-
DIMOB

[31]

Parametric

Bacteria

Composition

Predicts
genomic
islands using
dinucleotide
composition
and presence
of mobility
genes.

IslandPick
[32]

Phylogenetic
implicit

Bacteria

Species,
Strain

Predicts
genomic
islands by
comparing
closely related
genomes.

IslandViewer4
[33]

Parametric,
phylogenetic
implicit

Bacteria &
archaea

See other
tools

Integrates
IslandPick,
IslandPath-
DIMOB, SIGI-
HMM, and
Islander

Near HGT
[34]

Phylogenetic
implicit

Bacteria

Species,
Strain

Measures
synteny index
and constant
relative
mutability from
comparisons

PGAP-X
[35]

Phylogenetic
implicit

Bacteria

Pangenome

Pan-genome
Analysis
Pipeline;
Pangenome
gene presence
absence

RANGER-DTL
[36]

Phylogenetic
explicit

All

All

Rapid ANalysis
of Gene family
Evolution using
Reconciliation-
DTL;
Reconciles
gene and
species trees
to detect
duplications,
transfers, and
losses.




Tool

Category

Taxonomic
scope

Event
scope

Summary

RecentHGT
[371

Phylogenetic
implicit

Bacteria &
archaea

Species,
Strain

Expectation
maximization
algorithm on
global protein
sequence
alignments

RIATA-HGT
[38]

Phylogenetic
explicit

All

All

Identifies
incongruencies
between gene
trees and
species trees.

siB
[39]

Parametric

Bacteria &
archaea

Species,
Strain

Sequential
Information
Bottleneck;
Signals derived
from k-mer co-
occurrence to
identify
transferred
regions

ShadowCaster
[40]

Parametric,
phylogenetic
explicit

Bacteria &
archaea

Composition

Uses a support
vector machine
on
compositional
features to
identify
candidates and
then filters
results by
assessing
ortholog
similarity at
increasing
taxonomic
distances.

SigHunt
[41]

Parametric

Eukaryotes

Composition

Sliding window
of 4-mer
frequencies.

SIGI-HMM
[42]

Parametric

Bacteria &
archaea

Composition

Predicts
genomic
islands using a
combination of
codon usage
bias and



Tool

Category

Taxonomic
scope

Event
scope

Summary

hidden Markov
models.

T-REX
[43]

Phylogenetic
explicit

All

All

Tree-based
search for
Reticulate
Evolution;
Incongruities in
phylogenetic
trees

TF-IDF
[44]

Parametric

Bacteria &
archaea

Species,
Strain

Term
frequency-
inverse
document
frequency to
identify
unusual
sequence
features

Table 1

Non-exhaustive list of computational tools for HGT discovery.

Composition: Composition different from acceptor genome.

Pangenome: Any set of organisms one can reasonably build a pangenome from

(clade, species, genus).

Kingdom: Cross-kingdom detection, usually by user-defined definition of

ingroup and outgroup.

Sub-kingdom: Any taxonomic level lower than kingdom and higher than species

or strain, usually with decreasing accuracy at higher taxonomic resolution.

Parametric methods analyze the genome of interest to identify regions that deviate

from species-specific expectations in GC content, codon usage, amino acid usage, k-

mer frequencies, gene annotations, or other characteristics [10]. These methods are

fast, but natural differences in genome uniformity can lead to over-prediction and

they're often limited to recent transfer events for which amelioration of transferred

DNA is limited [10]. Parametric approaches can also be biased by gene length [45]



[46], so they may be difficult or impossible to use on genes, which vary in size, as
opposed to sliding windows across the genome, which are a consistent length.

Phylogenetic methods detect inconsistencies between gene and species evolution
[10]. This category can be further divided into explicit and implicit methods. Explicit
methods test alternative evolutionary scenarios using tree-based analysis, while
implicit methods rely on implied phylogenetic relationships derived from comparative
genomic approaches. Gene-by-gene explicit phylogenetic methods are the gold
standard in horizontal gene transfer detection [10][47]. The most robust of these
approaches works by formally reconciling gene family tree topologies (where each tip
is a protein sequence belonging to a species) with the species tree topology (each tip
is a species) under explicit Maximum Likelihood inference for models of gene family
duplication, transfer, and loss [48][49]. These methods identify candidate ancestral
HGT events while accounting for the confounding impacts of gene duplication and
loss on these inferences. Although powerful, these methods require that gene
homology is already known and that gene family trees of these homologous
sequences have already been inferred. Consequently, these methods are typically
ideally suited for focused application to a set of gene families of special interest and
thus are less computationally tractable to apply at scale than other HGT prediction
methods.

Without a priori knowledge about the donor and recipient genomes for horizontally
transferred genetic material, it becomes necessary to sample in a taxonomically broad
and unbiased manner. In this respect, implicit phylogenetic methods are particularly
well suited to hypothesis-free discovery of HGT events, as they scale more readily to
hundreds of genomes than do explicit methods. Implicit methods rely on patterns that
correlate with evolutionary history to infer HGT. For example, you can use BLAST to
identify homologous genes with different taxonomic labels than the query gene, which
can be analyzed to find patterns consistent with HGT [19][25]1[50][511[52]. Similarly,
you can use the pangenome — the full complement of genes shared between a set of
closely related organisms — to investigate HGT by determining the presence or
absence of genes across all genomes [53][54].

Across the HGT literature and tool space, including both parametric and phylogenetic
methods, genome contamination is often underappreciated. Contaminant sequences
in genomes can look like HGT events. This has led to rebuttals [14][55] against high-
profile papers [56][57] that claimed detection of high fractions of horizontally
transferred genes, and may more generally impact the biological interpretation of HGT



predictions. At least 0.54% of genomes in GenBank and 0.34% in RefSeq are
contaminated [58]. While some methods incorporate careful contamination checks
[19], others rely on filtering heuristics [16] or omit them entirely.

The problem

We sought a scalable computational approach for predicting HGT candidate genes.
We wanted the pipeline to be able to screen for HGT events across the tree of life and
across taxonomic scopes (from family- to kingdom-level transfers), and to assess the
likelihood that a candidate transfer event was instead the result of genome
contamination.

As other projects at Arcadia are developing explicit phylogenetic methods for the
inference of gene family evolution, we sought a solution that we could use upstream of
this tool to produce candidate species lists for further validation, and tried to avoid

using trees so as not to duplicate efforts.

Our solution

We built a pipeline that we're calling “preHGT” to quickly find preliminary HGT
candidates in genomes with gene predictions (RRID: SCR_027232). Our approach
blends parametric and phylogenetic implicit methods to generate a list of candidate
genes that may have been horizontally transferred (Figure 1). The preHGT pipeline uses
compositional scans, pangenome inference, and BLAST-based searches. It combines
information from these approaches, as well as annotation information, to highlight
candidate genes that are more likely to be contamination than HGT. By implementing
multiple HGT screens in one pipeline, we aimed to combine approaches that target
different signatures of HGT, to provide a more comprehensive HGT screening strategy.
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Conceptual overview of the HGT screening approach
implemented in the preHGT pipeline.

Starting from a genus or genera, preHGT scans GenBank and
RefSeq and downloads matching genomes with gene models
(coding domain sequences) and annotation files. The coding
domain sequences are represented by colored bars, and genes of
the same identity are the same color. The pipeline uses the input
genes from all genomes of the same genus to build a pseudo-
pangenome. These genes are provided as input to two HGT
screening methods — compositional scans and BLASTp-based
approaches. These steps return HGT candidates that are then
annotated to predict function. Information from each of these steps
is summarized and returned in a final table.

As we were designing the pipeline, we were concerned about overall run times,
especially given that BLAST searches can be computationally expensive. We
implemented clustering heuristics at two key places to keep the pipeline fast. First, we
clustered the genes in input genomes to reduce the number of genes we investigated
for HGT potential. Given our eventual goal of running this pipeline on all publicly
available genomes, we wanted to assess the potential for HGT in redundant genes
only once. We did this by clustering genes in closely related genomes — those of the
same genus — prior to screening for HGT. Second, we clustered the NCBI BLAST non-
redundant protein database, reducing its size by over half, to increase the speed of
BLAST searches [59].

One of the reasons we were particularly excited to include BLAST in our pipeline was to
take advantage of a rich literature of BLAST-based HGT predictor indices (Table 1,



Table 2). Many creative and insightful HGT screening methods exist, each with its own
strengths. However, these methods are contained in different tools. Since BLAST is the
most expensive computational step of our pipeline and none of the methods rely on a
clustered BLAST database, we re-implemented them in the preHGT workflow. This
consolidation allows HGT screening using a single tool and a single BLAST run

(Table 2).

We implemented the pipeline as both a Snakemake [60] and a Nextflow [61] workflow,
with software environments controlled by conda or Docker. The modular nature of the

workflow will allow us to incorporate additional methods over time.

The preHGT pipeline does not implement any new algorithms for HGT candidate
screening. However, the pipeline contributes to this space by:

1. Combining multiple existing HGT screening algorithms in one pipeline.

2. Using pangenome inference on eukaryotic genomes to inform a gene’s
contamination potential and phyletic distribution, and to reduce compute required

to run the pipeline.

3. Reducing the BLAST database size by clustering similar proteins, thereby
reducing compute required to run the pipeline and diversifying taxonomic

lineages represented in top hits.

4. Providing multiple information sources to help assess an HGT candidate’s

contamination potential.

The resource

The preHGT Snakemake and Nextflow workflows are available at this GitHub
repository (DOI: 10.5281/zen0do.8169269, RRID: SCR_027232).
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Overview of the preHGT pipeline steps, inputs, and outputs.

Users provide a genus or genera of interest in a TSV file as input to

the pipeline. The workflow then downloads and parses the available

genomes for those genera, builds a pseudo-pangenome, and

predicts and annotates horizontally transferred gene

candidates.

Below we provide an overview of each step in the preHGT pipeline (Figure 2).

1. Retrieving gene sequences and annotation files. The pipeline begins with the

user providing a genus or genera of interest in a TSV file. The pipeline then scans

GenBank [62] and RefSeq [63] for matching genomes and downloads gene

download. When a

models and genome annotation files using ncbi-genome-

genome is available in both GenBank and RefSeq, only the RefSeq version is

retained.

Building a pseudo-pangenome. For each genus, the pipeline then combines

genes into a pseudo-pangenome by clustering the nucleotide sequences at 90%

length and identity using mmseqs easy-cluster [64]. For
selects a single representative sequence by retaining the

alignments. The clustered nucleotide sequences are then

each cluster, MMSeq2
sequence with the most

translated into amino
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acid sequences using EMBOSS transeq [65].

We refer to this as a pseudo-pangenome, and not a pangenome, because we
empirically cluster genes based on sequence similarity and not by constructing
orthologous groups or by considering the evolutionary history of each sequence
[66][67]. We recognize that while this may collapse functionally different paralogs,
it is unlikely to obscure patterns of HGT from distant donor genomes; paralogous
genes share a common ancestor, so while they may serve different purposes for
the organism, at >90% identity only one copy of the gene needs to be screened
for HGT potential. Using a pseudo-pangenome is useful in two ways for the
pipeline. First, it reduces the number of genes that are investigated which reduces
run times. Second, it provides metadata about the gene. Singletons are more
likely to be contaminants, and genes that are only present in a subset of genomes

may have interesting evolutionary histories (e.g. gene loss).

. Screening for HGT candidates. Using the genes in the pseudo-pangenome, the

preHGT pipeline then uses two approaches to screen for HGT candidates.

- Compositional scan. The first approach uses relative amino acid usage to
detect proteins with outlying composition. It measures relative amino acid
usage using the EMBOSS pepstats function [65], produces a distance matrix
with the base R function dist() , and hierarchically clusters the distance matrix
with fastcluster’'s hclust [68]. It detects outliers by cutting the resultant tree
with height/1.5 and retaining any cluster that contains fewer than 0.1% of the

pseudo-pangenome size.

Relative amino acid usage is the frequency that each amino acid is used in each
gene, normalized by the total number of amino acids in that gene. For example,
if alanine is used 27 times in a protein that is 100 amino acids long, the relative
usage would be 27%. Relative amino acid usage is generally conserved across
a genome and reflects an organism's environment [69]. We tried many
compositional metrics such as tetranucleotide frequency, GC content, and
codon usage. However, we found that outlying proteins were driven by abnormal

length for all metrics other than relative amino acid usage.

Given that this is a reference-free approach, genes returned by this screening
method do not have accompanying donor species predictions, which makes

interpretation more challenging. Aberrant relative amino acid usage can also



arise from mechanisms other than HGT and this method does not distinguish

between potential sources.

BLASTp scan. The second approach uses BLASTp to identify homologous
proteins. All genes in the pseudo-pangenome are BLASTed against a clustered
version of NCBI’s nr database (90% length, 90% identity) [59] using DIAMOND

blastp [70]. The pipeline then adds lineage information to the BLASTp search
using dplyr, dbplyr, and RSQLite [71]. It scans these results for signatures of
transfer events using multiple, previously published algorithms (Table 2) [19][25]
[50]1[51][52].

One modification we made throughout is using length-corrected bit scores
output by DIAMOND blastp instead of raw bit scores. Bit scores are sensitive
to gene length, so using corrected bit scores reduces biases associated with

gene length in HGT screening [72].

The choice of database will dramatically impact the results produced by this
screen. We chose to use a clustered version of the NCBI nr database [59] both
to make the BLASTp step faster and to ensure the results contain a variety of

taxonomic lineages in cases where many near and distant homologs exist.

Using this database, combined with our methods of choice (Table 2), the
preHGT pipeline screens for HGT events that occur in seven domains of NCBI's
taxonomy: bacteria, archaea, fungi, plants, metazoa, other eukaryotes, and
viruses (“kingdom” taxonomic resolution). It will also screen for HGT events
between lineages that are in the same domain as the query genus but are
different up to the family level from that genus (“sub-kingdom” taxonomic

resolution).



Index

Tool

Taxonomic
resolution

Data used

Calculated by

Aggregate
hit
support+

[19]

AvP

Kingdom

All bit
scores

Subtracting the sum
of normalized bit
scores in the donor
group from the sum
of normalized bit
scores in the
acceptor group.

Alien index
[50]

NA

Kingdom

Minimum
E-value

Subtracting the
transformed E-value
of the best donor hit
from the
transformed E-value
of the best non-self
acceptor hit.

HGT score
[51]

NA

Kingdom

Maximum
bit score

Subtracting the best
non-self acceptor
hit bit score from
the best donor hit
bit score and
normalizing this
value.

Donor
distribution
index

[52]

NA

Kingdom

Number of
hits per
kingdom

Measuring the
dispersion query
homologs across
groups by
determining the
number of hits per
kingdom against the
total number of
possible kingdoms.

Gini
coefficient

NA

Kingdom

Number of
hits per
kingdom

Measuring
inequality among
values of a
distribution, where
values are the
number of BLAST
hits observed for
each kingdom.

Entropy

NA

Kingdom

Number of
hits per
kingdom

Measuring disorder
among values,
where values are
the number of
BLAST hits
observed for each
kingdom.




Taxonomic

Index Tool resolution Dataused | Calculated by
Considering
taxonomic

. distances between
Transfer
ndex HGT- g'u”t?_dom’ All bit query and hit, bit
Finder Kinadom scores score ratios, and

[25] 9 rank and total
number of BLAST
hits.

Table 2

Algorithms that parse BLASTp results to predict HGT candidates.
*NA: Not applicable.

*Aggregate hit support is calculated by subtracting the sum of all
normalized BLAST bit scores for all hits in an in-group from an out-group.
We use a different normalization equation than the original method, which
leads to different results.

4. Annotation. We then annotate the HGT candidates. For each candidate HGT
amino acid sequence, we use two different approaches for ortholog annotation.
First, the pipeline uses KofamScan for KEGG ortholog annotation [73]. Next, the
pipeline uses HMMER3 hmmscan to assign annotations to HGT candidates.

hmmscan compares each HGT candidate sequence against hidden Markov
models (HMMs) of proteins in a database. We built a custom HMM database to
target specific annotations of interest. The HMM database currently contains

Virus Orthologous Groups from VOGDB and biosynthetic genes and can be

extended in the future to meet user annotation interests.

5. Reporting. The last step combines all information that the pipeline has produced
and outputs the results in a TSV file. The results include the GenBank protein
identifier for the HGT candidate, BLAST and relative amino acid usage scores,
pangenome information, gene and ortholog annotations, and contextualizing

information about the gene such as position in the contiguous sequence.
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Types of HGT events that the pipeline screens
for

While we tried to create a fast and generalized pipeline, preHGT is better at detecting
some patterns of HGT than others. The preHGT pipeline screens for HGT events where
the donor and recipient differ in taxonomy at the family level or above. It is most likely
more accurate when the transfer events occur between more distantly related
organisms and where the recipient gene retains homology to the gene in the donor
genome. We anticipate the primary use of this approach will be to identify candidate
transfer events and donor and recipient groups to which more granular approaches
can be applied to better disentangle the evolutionary history of the gene.

The parametric approach we implemented screens for genes with outlying relative
amino acid usage compared to the rest of the genes in the genome. This requires that
the donor and acceptor species differ in amino acid composition, and that these
differences persist in the transferred genes, a scenario that is most typical of recent
transfer events among evolutionarily divergent species.

The BLAST-based implicit phylogenetic approaches we implemented screen for genes
that exhibit a greater degree of sequence similarity among designated taxonomic
outgroups than within ingroups. In the original tools and papers in which these
algorithms were generated, the authors implemented or validated their approaches at
specific taxonomic levels that the preHGT pipeline adheres to (Table 2). Some are
designed to screen for cross-kingdom transfer events, while others can screen for
sub-kingdom-level events. However, because the chance of spurious inference of
homology increases among more closely related species, results should be more
carefully scrutinized at lower taxonomic levels (e.g. order, family). Homology detection
also becomes increasingly difficult at larger taxonomic distances, so the pipeline may
miss highly diverged homologs.



Additional considerations and caveats

How we deal with contamination and other sources of
false positives

HGT screens often return many false positives [56][57]. We used contextualizing
information about HGT candidates to reduce the number of false positives reported by
the pipeline.

Contamination is the biggest source of false positives in BLAST-based HGT screening
algorithms. Many genomes in GenBank and RefSeq are contaminated [58].
Contamination arises from impure sampling, contaminated reagents, lab cross-
contamination, sequencing artifacts, or reference database errors [74]. To combat the
presence of contamination, we incorporated multiple corroborating lines of evidence
to assess whether contamination is more likely than HGT. First, we determine the
length of the contiguous sequence within which the candidate gene is found. Short
contiguous sequences are more likely to be contaminants [58][75]. Next, we
determine how many genes are in the candidate gene’s cluster from our pseudo-
pangenome approach. Depending on the contamination source, it is unlikely that the
same contamination will occur in multiple genomes [76]. Therefore, if a homolog is
present in multiple genomes, it is less likely to be a contaminant. Lastly, for BLAST-
based results, we assess the percent identity between the donor and acceptor genes.
Amelioration deteriorates sequence identity after a transfer event [10], so the more
similar two genes are, the more likely similarity is driven by contamination. Many
methods use a cutoff of 70%-80% identity for contamination [16][77], but we instead
weigh this against other corroborating information.

In the future, we hope to further contextualize contamination potential against the
general contamination score for the acceptor genome. The more contamination a

genome contains, the more likely a candidate is to be a contaminant itself.

BLAST-based methods may also generate false positives arising from alignment errors
or alignment due to sequence similarity that does not arise from shared ancestry, such
as from convergent evolution or random chance. Alignment errors from short or low-
complexity sequences or from short, highly conserved domains may give the
appearance of a horizontal transfer event. To protect against this, we filter corrected

bit scores to those greater than 100, or, to rescue true homologs that are very



divergent, with a query coverage of greater than 70%. We also provide gene
annotations from multiple annotation sources to highlight hits that might be ultra-
conserved, such as those from ribosomal proteins. Over time, we hope to curate a list
of genes that the preHGT pipeline frequently detects as false positives and to develop
a strategy to filter them out.

Verifying bona fide HGT requires work beyond
preHGT

The preHGT pipeline provides a list of candidate HGT events. These candidates need
to be carefully scrutinized to determine whether they are biologically interesting and
whether they are more or less likely to be false positives. We built preHGT as a
generalized precursor to more in-depth HGT analysis (Figure 3). We envision that
preHGT can inform genome selection for comprehensive explicit phylogenetic
inference, which can help disentangle alternate evolutionary trajectories, or highlight

when not enough information is available to support HGT inference.
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Funnel of methods for HGT screening and
validation.

Implicit phylogenetic and parametric approaches
are fast, generalized methods for screening for
HGT in genes or genomes, but these methods are
prone to false positives. Explicit phylogenetic
methods can help eliminate some false positives
or determine when there is not enough evidence

to support HGT candidacy.

After these computational approaches, validation
requires additional methods. Alternative data
modalities like transcriptome sequencing or
laboratory experiments like FISH or PCR can
provide additional evidence in support of HGT.
While powerful, these methods require curated
information about the donor and acceptor
genomes and the candidate genes and thus can
usually only be used after initial exploration.

After phylogenetic analysis, more analysis is still required to reject the null hypothesis
that no transfer event occurred. The appropriate experiments for this will depend on
the HGT candidate event itself. For example, if a bacterial gene has been transferred
into a eukaryotic genome, it may be appropriate to interrogate the candidate gene for



the presence of introns, or if transcriptome information is available, for the presence of
transcription- and eukaryotic-specific RNA modifications such as 5" caps or Kozak
sequences. In the lab, PCR, FISH, or Southern blots may confirm the presence of the
sequence in the genome of interest, while Western blot or mass spectrometry can
confirm that the gene is transcribed and translated into a protein.

Limitations of the preHGT pipeline

Given our approach, we have identified multiple shortcomings. The most conspicuous
limitation is our focus on genes. The preHGT pipeline can only scan genomes with
gene models. We elected not to implement genome annotation as an early step in the
pipeline given that annotation procedures differ for eukaryotic versus bacterial and
archaeal genomes, and that eukaryotic genome annotation remains a challenging
problem from the genome alone [78][79]. This limits the preHGT pipeline to those
genomes with gene models (approximately 21%) and creates blind spots for HGT
detection across the tree of life. Of 56 eukaryotic phyla with genomes, only 45 have at
least one genome with gene models. Similarly, by treating genes in their entirety as the
unit that is horizontally transferred, we are unlikely to detect genes for which only a
nested region of the coding sequence was horizontally transferred.

There are also limitations born out of our decision to use composition or BLAST-based
HGT screening methods. First, these methods require that the gene has not
ameliorated to the composition of the acceptor genome or that it maintains detectable
homology to the donor genome. This may limit our detection of ancient HGT events.
Second, these methods will be less sensitive to HGT events that occur between
closely related organisms. Third, since BLAST-based approaches rely on taxonomies,
there are risks since taxonomies may be wrong and since they do not account for
branch lengths in the relatedness of species. Lastly, false positives may arise from
alignment between short or low-complexity sequences or from natural sequence
similarity such as what might arise from convergent evolution or from highly conserved
gene sequences. To combat both cases, we have implemented filtering criteria to help
eliminate these issues.

Lastly, we did not integrate an explicit phylogenetic approach to better resolve the
evolutionary histories of HGT candidates. We elected to forgo this step because
another team at Arcadia is developing a tree-based workflow. We are currently



experimenting with how to facilitate handoff between the two tools to rapidly enable
this next step in validation.

Additional methods

We used ChatGPT to add comments to our code and suggest wording ideas. We also
used ChatGPT to add comments to external code to help us better understand how it
worked when trying to implement some existing tools in another language.

Key takeaways

« preHGT is a scalable pipeline that screens for potential HGT events in genomes with

gene models across the tree of life and taxonomic scales.

« The pipeline leverages compositional and BLASTp scans, pangenome inference,

annotation, and reporting techniques to provide comprehensive results.

« Multiple checks and filters defend against false positives, including contamination

detection and sequence alignment artifact filtering.

« The pipeline is implemented in both Snakemake and Nextflow. Its modular design

means it’s easily extensible to incorporate more methods in the future.

- preHGT aims to identify HGT events that users further investigate with other

approaches such as tree-based ones.

Next steps

Our follow-up plans include:

1. Eukaryotic HGT prediction: We plan to run the pipeline on all eukaryotic
genomes in GenBank and RefSeq that have gene models and to make the results

available.

2. Building a user interface for results exploration: We plan to build a simple user
interface to explore results produced by the pipeline. Exploration modes will allow

users to dive into gene transfer events by donor or acceptor taxonomy, predicted



functions of genes involved, or by strength of result, and to visualize the results in

their genomic context.

3. Adapting the pipeline to take transcriptome assembilies as input: We plan to
extend the pipeline to run on assembled transcriptomes by incorporating
upstream gene prediction rules. We will then run the pipeline on the
transcriptomes in the NCBI Transcriptome Shotgun Assembly database and make

the results publicly available.

4. Integrating new algorithms for HGT screening: Other algorithms exist for the
interpretation of BLASTp results. We plan to integrate those from other tools into

this pipeline in the future.

We welcome feedback on the user experience, the results we include, or additional
algorithms or metrics that would be helpful to incorporate.
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