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ProteinCartography:
Comparing proteins with
structure-based maps for
interactive exploration

The ProteinCartography pipeline identifies proteins related to a query
protein using sequence- and structure-based searches, compares
all protein structures, and creates a navigable map that can be used
to look at protein relationships and make hypotheses about function.
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Purpose

In the ProteinCartography pipeline, we use protein structural comparisons to generate
interactive maps of protein families for exploration and discovery. This kind of analysis
can be useful for provoking hypotheses about what properties could be driving
functional differences within protein families and identifying outlier proteins where
innovations might be found.
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We're presenting our initial version of the pipeline, which contains the core
functionality, but we intend to continue improving the pipeline itself and adding
features in future versions. For additional information about what’s coming, jump to the

Next Steps section. Check back for new releases and updates!

« This pub is part of the platform effort, “Functional annotation: mapping_the
functional landscape of protein families across biology.” Visit the platform narrative

for more background and context.

- The ProteinCartography pipeline is available in this GitHub repository. Try it

yourself and let us know what you think!

- We've included several examples throughout the pub. The code for that analysis and

the resulting figures are available in the same GitHub repository and the associated

data are on Zenodo.

The strategy

All organisms, from single-celled bacteria to multicellular animals, share common
types of basic building blocks, including proteins. Comparing proteins across the tree
of life can help us understand how different organisms have evolved distinct traits and
discover novel biology. Recent tools that enable searches based on structural
similarity, including Foldseek, have made it possible to compare proteins from diverse
organisms in new, and perhaps more informative, ways [1]. We developed a pipeline
that facilitates comparative protein biology by leveraging these emerging tools to

enable users to interactively explore protein families.

The problem

Comparative protein biology is an important and rapidly progressing field. Amino acid
sequences are widely used for these analyses due to the abundance and ease of
working with sequence data, but there are disadvantages to such methods. For
example, small protein sequence changes can result in dramatic structural changes
that alter the function of the protein, and conversely, proteins with low sequence
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similarity can have similar folds and perform similar functions [2]. Comparisons of
protein structure could overcome these limitations, as structures are generally more
conserved than protein sequences and are more closely tied to protein function [3].
Historically, researchers have been limited by the availability of experimentally
determined structures, but recent advances in protein folding prediction tools, such as
AlphaFold and ESMFold, and protein search tools like Foldseek have brought us into a
new era of protein analysis [4]1[1]1[5][6].

Three main methods are typically applied to represent protein space: classification,
networks, and maps [7]. These can be created based on sequence, structure, or other
characteristics. Classification sorts proteins into hierarchical categories. For example,
SCORP (structural classification of proteins) and CATH (class, architecture, topology,
homologous superfamily) databases sort protein domains into categories based on
folds or structure [8][9]1[10]. Networks represent proteins as nodes that are connected
to related proteins by edges [2][7]. The most common type of network is a sequence
similarity network (SSN), where protein hodes are connected by edges that represent
some sequence similarity threshold defined by the user. Networks are useful because
they can be used to cluster proteins into sub-groups. Finally, maps visualize a high-
dimensional protein space representing complex information (like protein structural
characteristics) as a collection of points in a low-dimensional space, often generated
via classic dimensionality reduction tools like principal component analysis (PCA) and
multidimensional scaling (MDS) [11][12].

Many of the analyses done with these three methods are aimed at understanding the
whole protein universe, or all protein structures that have been experimentally solved
or predicted [Z1[8I[91[101[111[12][13]1[14][15][16]. While these analyses are extremely
useful for understanding large-scale protein evolution and for understanding how
proteins as a whole relate to each other, they are computationally complex and can be
difficult to interpret if you want to know more about individual proteins or protein
families.

Our solution

We developed a pipeline to rapidly and intuitively identify and visualize groups of
proteins with similar structures across user-defined protein families (Figure 1). The
ProteinCartography pipeline uses a combination of networks for clustering analysis
and maps for visualization, and focuses these protein space representations at the



protein family level to allow for rapid and intuitive analyses. The pipeline starts with a
protein of interest provided by the user and searches available sequence and structure
databases. After obtaining the AlphaFold-predicted structures of each match, the
pipeline uses Foldseek to perform all-v-all structural comparison, which it uses to
generate a similarity network for identifying groups of structurally related proteins. The
pipeline then performs dimensionality reduction to create a visual “map” for
exploratory analysis. Informative protein features can be overlaid on the map, such as
cluster association, taxonomy, sequence conservation to the query, and annotation
information. This allows you to generate hypotheses about what properties could be
driving functional differences within protein families and identify outlier proteins where
innovations might lie across taxa.

In this pub, we’ll take you through some general uses of the ProteinCartography
pipeline, as well as an example of how the ProteinCartography pipeline works, what the
results look like, and how to analyze them. This is all contained in the
“ProteinCartography in action” section directly after this paragraph. For more in-depth
information about the limitations of ProteinCartography and individual steps and

parameters of the pipeline, see the “Comprehensive overview of the pipeline” section.
To learn more about plans we have for improving the pipeline see the “Next steps”
section and to provide feedback check out the “What do you think?” section.

TRY IT: The ProteinCartography pipeline is available in this GitHub repository
(DOI: 10.5281/zen0d0.8388050), along with instructions to get started.

ProteinCartography in action

You can use the ProteinCartography pipeline to generate hypotheses and make
predictions about individual proteins. For example, it can identify proteins that are
structurally similar to an input protein, or it can identify outlier proteins. Downstream
analyses could tell you which regions of the protein are important for function, and
further investigation could determine whether these protein regions differ across
clusters. Additionally, you could use the ProteinCartography pipeline to annotate

proteins of unknown function or to provide support for annotation predictions.
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The pipeline also lets you explore subfamilies within larger protein families. For
example, it could be used to make hypotheses about whether distantly related
proteins in the same family are members of the same subfamily. You could use it to
identify especially interesting subfamilies for further examination (like subfamilies
composed of only proteins from a particular taxonomic group). This is perhaps the
most common use we've encountered so far, and we’ll dive into this use case more
below. Importantly, we use the pipeline as a starting point to generate hypotheses and
make predictions, but encourage users to test their hypotheses and predictions with

additional analyses.

Running the pipeline

Before we discuss the results of the pipeline and how to interpret them, we provide a
brief walkthrough of how a run of the ProteinCartography pipeline typically works. To

jump to a detailed description of each step in the “Comprehensive overview of the

pipeline” section, click the link at the beginning of each step below.

The pipeline generally starts with a protein of interest, or input protein, but it can start
with multiple proteins. A PDB (structure) file and/or FASTA (sequence) file are required
for each input protein. The package provides utilities to fetch these from UniProt or
AlphaFold based on accession number, or to fold short sequences (less than 400
amino acids) using ESMFold [4][17]. For proteins longer than 400 amino acids, you can
use outside tools like ColabFold to fold your proteins and import them into the pipeline

[18].

1. Sequence-based search: The pipeline performs a protein BLAST search against

the NCBI non-redundant (nr) database to identify proteins based on sequence

similarity to the input [19].

2. Structure-based search: The pipeline performs a Foldseek search against the
AlphaFold/UniProt50 v4, AlphaFold/Swiss-Prot v4, and AlphaFold/Proteome v4

databases to identify proteins based on structural similarity to the input [1]1[5][6]
[16].

3. Aggregate and filter hits: The pipeline combines BLAST and Foldseek results and

filters hits based on a user-defined length, fragment status, and whether the

protein is marked as inactive.



. Download hits: Using the combined hits list, the pipeline downloads PDB files

from the AlphaFold database and metadata from UniProt for all hits. Metadata
include fields such as taxonomic information, annotation information, protein
characteristics, and others [5][6][17].

. Construct all-v-all similarity matrix: Using the downloaded structure files, the

pipeline compares the structure of every protein to the structure of every other
protein to identify the best matches using foldseek search . Forthose matches,
the pipeline uses foldseek aln2tmscore to calculate a similarity score, or a TM-
score, where generally, a value of 1 means two structures are identical and values
closer to zero mean the structures are less similar [1][20]. These scores are
aggregated in an all-v-all similarity matrix. For more information about TM-scores,

see the “Construct all-v-all similarity matrix” section.

. Cluster proteins: The all-v-all similarity matrix is then used to cluster proteins into

groups of similar proteins. The pipeline uses two different clustering algorithms,
Foldseek’s TM-align greedy set clustering and the Leiden algorithm [1][21]. While
both are provided in the final results, we default to Leiden clustering for
visualizations. The Leiden algorithm is a clustering method that iteratively groups
proteins, in this case attempting to optimize the modularity of the network [21].
More information on clustering algorithms and why we default to Leiden clustering

can be found in the detailed “Cluster proteins” section.

. Calculate cross-cluster similarity matrix: Once clusters have been created, the

pipeline performs cluster-related analyses, including calculating the cross-cluster
similarity matrix. The cross-cluster similarity matrix is a heatmap representing the
mean TM-score of all structures in each cluster versus all other proteins in each
other cluster. The diagonal of this matrix tells us how similar all proteins are within
a cluster. We average the values of the diagonal to determine a “cluster
compactness” score that we use as a heuristic for how well-clustered the proteins

are overall.

. Perform semantic analysis: Using clustering information and metadata obtained

from UniProt, the pipeline performs semantic analysis to evaluate and visualize
the most frequently occurring existing annotations for each cluster [17]. The
pipeline determines the most common annotations per cluster and shows them
as individual bar charts, as well as the most commonly used annotation words per

cluster and shows them as word clouds.



9.

10.

Create maps: The pipeline uses the all-v-all similarity matrix of TM-scores to
perform dimensionality reduction and create a map of the protein family. It uses
the all-v-all similarity matrix to calculate a principal component analysis (PCA),
which it then uses to calculate a t-distributed stochastic neighbor embedding (t-
SNE) and a uniform manifold approximation projection (UMAP) [22][23]. For more
information on these dimensionality reduction techniques, see the “Create map”

section. Both t-SNE and UMAP result in 2D maps that are meant for visualization.

Generate interactive plots: To make t-SNE and UMAP plots maximally useful, the

pipeline uses the Plotly Python package [24] to create an interactive and
navigable map with color overlays corresponding to protein metadata, including
length, broad taxon, TM-score to input from Foldseek local search, source
(Foldseek vs. BLAST), average pLDDT (structure quality), and others.
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ProteinCartography at a glance.
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ProteinCartography starts with a user input (FASTA and/or PDB) and

then runs proteins through both a BLAST and Foldseek search. It

then fetches structures of identified hits and metadata for each

protein. It performs a structural comparison step and then groups

proteins with similar structures together in clusters. Additionally, it

does analysis based on each protein and based on each cluster.

Finally, it combines all of the information gathered throughout the

analysis and uses it to generate an interactive map of the data for

exploration of the protein family.

Visualizing the mitogen-activated protein

kinase 10 (MAPK10) family with
ProteinCartography outputs

As an example, we ran mitogen-activated protein kinase 10 (MAPK10), also called c-

Jun N-terminal kinase 3 (JNK3), one of the top 200 most-studied human proteins,



through the ProteinCartography pipeline [25]. We refer to this protein as MAPK10
throughout this pub and abbreviate it as MK10 in figures. For the input, we used
P53779 (Figure 2, A). The pipeline carried out the steps listed above and produced the

following outputs, which we explore further in the next section:

« A UniProt features TSV file containing a summary of the UniProt metadata as well as

clustering information:

MAPK_aggregated_features.tsv

« An HTML file containing cross-cluster similarity matrix (Figure 3)

- An HTML file containing interactive t-SNE plot with color overlays (Figure 4)

An HTML file containing interacting UMAP plot with color overlays (Figure 5)

An HTML file containing semantic analysis (Figure 6)

A summary of the outputs relevant to our interpretation is in Figure 2, but we will go
through each output throughout the section.
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Figure 2

Fungal and plant MAPK10 proteins identified using ProteinCartography.

(A) The structure of the MAPK10, showing the protein generally has a well-defined

structure with some disordered edges and a confident AlphaFold prediction.

(B) Similarity matrix for the clustering of MAPK10 hits shows a diagonal with a
higher within-cluster TM-score, suggesting the clusters are compact. The
protein treated as the query in the comparison is on the y-axis, and the target is
on the x-axis. Colored dots along the axes of the chart correspond to the colors
of the Leiden cluster shown in the maps in C-F. The cluster containing the input
protein is marked with a four-pointed star marker. The two other clusters we
focus on further are annotated with asterisks.



(C) t-SNE visualization created for MAPK10 and the proteins identified as similar
to it. The overlay applied to the map is shown in the upper right corner of each
graph, but briefly we show Leiden cluster, broad taxon, source of the protein, the
TM-score to the input protein, the average pLDDT of each protein, and the
annotation score of each protein. The star in each map represents the input
protein, and the dotted boxes show the three clusters that we focus on in D-F.

(D) Zoom in of LCO2, the cluster that contains the input protein.
(D) Semantic analysis of LC0O2, which contains the input protein.

(E) Zoom in of LC11, interesting because of its compactness and because it is
composed of primarily proteins from plants.

(E") Semantic analysis of LC11.

(F) Zoom-in of LC12, interesting because of its compactness and because it is
composed primarily of proteins from fungi.

(F) Semantic analysis of LC12.

Exploring the MAPK10 family with
ProteinCartography

Mitogen-activated protein kinase 10 (MAPK10), or c-Jun N-terminal kinase 3 (JNK3), is
a serine/threonine kinase that is a member of the MAP kinase family. MAP kinases are
involved in a number of cellular functions, including everything from proliferation to
apoptosis [26]. These proteins form signaling cascades, or chains of interactions that
result in a final signal being delivered. This particular kinase, MAPK10, is a neuronal
kinase that is often involved in stress response, where its activation results in
phosphorylation of several transcription factors that result in neuronal apoptosis [27].

MAP kinases are found in almost all eukaryotic organisms, but individual MAP kinases
are not always well conserved. In particular, MAP kinases in the JNK pathway seem to
have emerged more recently in evolutionary time, as they are usually only described in
vertebrates [28], with a somewhat similar pathway described in yeast as the “HOG
pathway” [29]. Using the ProteinCartography pipeline, we can ask whether MAPK10-



like proteins exist in earlier-diverging organisms, like fungi and plants. Additionally, we
can ask if these MAPK10-like proteins are structurally similar or distinct based on how
they cluster, and we can identify clusters and proteins for further computational or

experimental analysis.
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Figure 3

Cross-cluster similarity matrix for MAPK10 suggests
some clusters are compact and distinct.

This interactive cross-cluster similarity matrix is a visual
representation that shows the mean TM-score of all of the
structures in each cluster versus all other proteins in each
other cluster. The protein treated as the query in the
comparison is on the y-axis, and the target is on the x-axis.
The diagonal of the heatmap shows how similar proteins are
within clusters, or how compact clusters are. The input



protein for this analysis can be found in LCO2. LC: Leiden
cluster.

You can view a static version in Figure 2, B.

First, to determine how well the clustering performed, we looked at the cross-cluster
similarity matrix (Figure 2, B and Figure 3). The diagonal of the matrix shows how
structurally similar proteins are within each cluster, or how compact the clusters are.
We refer to the average value of the diagonal as “cluster compactness.” The goal of
clustering is to group similar proteins together, so when clusters contain structures
that are not very similar, it can suggest issues with the clustering that may have to do
with the proteins themselves or the clustering parameters. Cluster compactness
doesn’t take into account all the ways that the pipeline might fail or succeed, but it
does give us a general idea of whether a run produced interpretable results. We dig
more into this in the “Testing the limits of the pipeline section.” We also consider

cluster distinctness (how similar each cluster is to other clusters) when evaluating
clustering. In this case, the clusters are not very distinct, but we expect this is because
we're evaluating a family of closely related proteins (Figure 2, B and Figure 3).

For this MAPK10 map, the cluster compactness value is 0.63 (Figure 2, B and Figure 3),
which is around average for the analyses conducted for this pub. Among the clusters in
this analysis, Leiden clusters 11 (LC11) and 12 (LC12) drew our attention, as they are
compact, suggesting that they might hold proteins that are well clustered. Looking
beyond the diagonal, the similarity matrix also tells us which clusters are similar to
each other. In this example, we see that LCO2 and LCO6 are quite similar and may be
more related to each other than they are to other proteins in the map (Figure 2, B and

Figure 3).
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Interactive t-SNE plot with color overlays for MAPK10.

The input protein is represented by a four-pointed star, which
you can toggle on and off using the “Input Proteins” button.
You can change the color overlay using the “color” drop-
down. More information on the color overlays themselves is in
the “Plot overlays” section. LC: Leiden cluster.



color Leiden Cluster v

e LCOO Lco1l LC02 LCO3 ¢ LCO4 LCO5
LC09 LC10 LC11 LC12 LC13

Figure 5

Interactive UMAP plot with color overlays for MAPK10.

The input protein is represented by a four-pointed star, which
you can toggle on and off using the “Input Proteins” button.
You can change the color overlay using the “color” drop-
down. More information on the color overlays themselves is in
the “Plot overlays” section. LC: Leiden cluster.



We next looked at the clusters themselves. Our protein of interest appears in LCO2
(Four-pointed star in Figure 2, C-D, Figure 4, and Figure 5). In addition to looking at

which cluster our protein belongs to, overlaying additional information on the map
provides more insight. For example, the pipeline categorizes proteins based on their
broad taxonomic grouping. By examining the taxonomic groupings of proteins in the
neighborhood of our input protein, we observe that our protein and the surrounding
proteins originate from mammals and other vertebrates (“Taxon” panels in Figure 2, C-
D; “Broad taxon overlay” panels in Figure 4 and Figure 5). It’s important to note that the

taxonomic depth is not uniform and is instead chosen to be generally interpretable and
useful to people while staying within the limitation presented by the available number
of colors. Advanced users can also customize the taxonomic groups and colors based
on their organisms of interest. In this view, we observe that LC12, one of the tight
clusters we saw in Figure 2, B, contains primarily fungal proteins, whereas LC11is
composed of primarily plant proteins (“Taxon” panels in Figure 2, D-F; “Broad taxon

overlay” panels in Figure 4 and Figure 5).

Intrigued that we identified clusters of fungal and plant proteins in our MAPK10
analysis, we explored features calculated by the pipeline to determine if these proteins
really are MAPK10 or JNK proteins. We looked at the quality of predicted structures
(mean pLDDT), and found that the proteins in these clusters were high-quality, or
closer to 100 (“pLDDT” panel in Figure 2, C-F; “pLDDT” overlay in Figure 4 and Figure

5). We also looked at the structural similarity to our input (TM-score to P53779) and saw
that the structures in LC11 and LC12 were generally structurally related to our input
protein (“TM-score” panel in Figure 2, C-F; “TM-score to input” overlay in Figure 4 and
Figure 5). Note that the TM-score to input values shown in the maps are calculated
during the all-v-all comparison step of the pipeline. During this step, TM-scores are
only calculated for pairs of proteins that meet the default threshold. The rest of the
proteins are marked as zero. For more information see the “Construct all-v-all similarity

matrix” section.
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Semantic analysis of MAPK10 provides a human-readable method for
understanding cluster composition.

Each cluster has a different-colored ranked bar chart and word cloud that
correspond to their Leiden cluster color in the interactive maps. The bar chart
summarizes the most common full annotation and the word cloud summarizes
the most common annotation words.

To provide additional context, the pipeline generates simple semantic analysis

visualizations that summarize existing annotation information for proteins retrieved



from UniProt (Eigure 6). Comparing the three clusters of interest, we see the top
annotation for the cluster containing our input protein is “Stress-activated protein
kinase JNK (EC 2.711.24)", while the top annotation in LC11 is “Mitogen-activated
protein kinase (EC 2.711.24)” and in LC12 is “Mitogen-activated protein kinase HOG1
(MAP kinase HOG1) (EC 2.711.24)" (Figure 2, D', E', F, Figure 6). “EC 2.711.24” refers to
the enzyme class to which these MAPK proteins belong, suggesting that they do all fit

in the same enzyme class. The HOG pathway from yeast is similar to the JNK pathway
[29], so it makes sense that LC12, which is primarily composed of yeast proteins,
would contain many proteins annotated as a HOG1 protein. To determine how useful
these annotations are, we can overlay the UniProt annotation score on the map
(“Annotation score” panels in Figure 2, C-F; “Annotation score overlay” drop-down in
Figure 4 and Figure 5). The annotation score is assigned by UniProt and ranges from 1

to 5, where a score of 5 means that the annotation is backed by experimental evidence
and a score of 1 generally means that annotations were predicted or inferred [17]. For
both of these clusters, there are several proteins supported by an annotation score of
4 or 5, suggesting that at least some of the annotations in each cluster are likely
backed by experimental evidence (“Annotation score overlay” panels in Figure 2, C-F;

“Annotation score overlay” drop-down Figure 4, and Figure 5).

Thus, using the ProteinCartography pipeline, we could now hypothesize that there are
MAPK10 or MAPK10-like proteins in fungi and plants. However, we would want to test
these hypotheses with additional experiments.

Pursuing hypotheses generated with
ProteinCartography

From a large list of candidates, the pipeline helped us identify specific groups of
proteins of interest in diverse taxonomic groups and make predictions about their
function in relation to our input. In this case, it’s especially interesting to note that the
sequence identity of the proteins identified in plants and fungal species is quite low
(~30%) and these were identified via Foldseek, suggesting that the pipeline was able
to identify relatives that would have been missed using a BLAST search alone (Figure
3, Figure 4). However, because the pipeline provides information based on predicted
protein structures, further analysis would be necessary to draw definitive conclusions
about protein function. For this example, downstream analyses like assessing the
presence or absence of interacting proteins upstream and downstream of MAPK10 in


https://www.genome.jp/dbget-bin/www_bget?ec:2.7.11.24

the sighaling cascade, looking for the conservation of specific and known catalytic
residues, determining evolutionary history, or performing biochemical assays to
directly test protein function, could be used to help determine the function of proteins

of interest.

Comprehensive overview of the
pipeline

For users interested in learning more about the inner workings of the
ProteinCartography pipeline, the following section dives into the details and
parameters that we used to build it. It also provides additional in-depth information for
each step and a meta-analysis that tests the limits of the pipeline. To jump straight to
the next section, “Next steps,” click here.

To run the pipeline, clone the GitHub repository and follow the instructions there for
installation. The current version of the pipeline takes around 30 to 90 minutes to run
for small- to average-sized (< 400 amino acids) proteins, assuming default search
parameters.

TRY IT: The ProteinCartography pipeline is available in this GitHub repository,

along with instructions to get started.

Input proteins

To run the pipeline, you will need a FASTA and/or PDB file for your input protein(s). The
pipeline accepts a single or multiple input proteins. Each input protein will be used to
perform independent BLAST and Foldseek searches. You can fetch FASTA and PDB
files for most proteins in UniProt. The pipeline can fold proteins less than 400 amino
acids in length using ESMFold [4]. You can generate PDB files for larger structures
using tools such as ColabFold [18].

After running this pipeline on a variety of proteins, we noticed that certain proteins
resulted in more interpretable and useful maps than others. For example, shorter
proteins with high structure quality tended to have the best performance. While we are


https://github.com/Arcadia-Science/ProteinCartography/tree/v0.4.0-alpha

working to improve the pipeline to be effective at analyzing a broad diversity of
proteins, we wanted to provide some guidance to users for what proteins might work
well in this preliminary release. We therefore performed a meta-analysis to identify the

limits of the pipeline.

Testing the pipeline limits by sampling from the
most-studied human proteins

To identify the characteristics that make proteins appropriate for the current version of
the pipeline, we analyzed a set of proteins sampled from the list of the 200 most-
studied human proteins, as reported in [25]. We selected 25 proteins from a
distribution of two features we noticed are important: protein length and structure
quality, represented by average pLDDT [30] (Figure 7, Table 1). The pLDDT is a value
that represents how a predicted structure will align with an experimental structure at
each residue based on the distance difference, so by averaging this value across the
length of the protein, we can determine how much of the protein lacks a defined
structure. We used these 25 proteins as individual input proteins for 25 separate runs
of the ProteinCartography pipeline.
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Characteristics of the 200 most-studied human
proteins.

(A) Distribution of protein length across the 200 most-
studied human proteins reported in Li & Buck (2021) that

had structures available on UniProt.

(B) Distribution of the average pLDDT across the 200
most-studied human proteins from the same study. The
average pLDDT was found by taking the average value of
the per-residue pLDDT for each protein. The colors
correspond to the confidence levels associated with
pLDDT as represented by the key.

(C) Bivariate analysis of the length versus the average
pLDDT for each protein. Based on this plot, we randomly
sampled 25 of the 200 proteins. The proteins we sampled
are represented by red dots.

UniProt Protein

D Protein name symbol
(infigures)

Q9UM73 ALK tyrosine kinase receptor ALK

Q96RI1 Bile acid receptor NR1H4

P43235 Cathepsin K CATK



https://doi.org/10.1002/pro.4038

UniProt . Protein
D Protein name s_ym_bol
(infigures)
P0O8603 Complement factor H CFAH
PO0374 Dihydrofolate reductase DYR
P98170 E3 ubiquitin-protein ligase XIAP XIAP
P49841 Glycogen synthase kinase-3 beta GSK3B
PO1112 GTPase HRas RASH
P68871 Hemoglobin subunit beta HBB
PO4439 ?#;Ainclass | histocompatibility antigen, A alpha HLAA
P0O1834 Immunoglobulin kappa constant IGKC
P14174 Macrophage migration inhibitory factor MIF
P53779 Mitogen-activated protein kinase 10 MK10
Q15596 Nuclear receptor coactivator 2 NCOA2
Q99497 Parkinson disease protein 7 PARK7
P62937 Peptidyl-prolyl cis-trans isomerase A PPIA
Q13451 Peptidyl-prolyl cis-trans isomerase FKBP5 FKBP5
P27986 :Ik;%saphatidylinositol 3-kinase regulatory subunit PS5A
075530 Polycomb protein EED EED
P28074 Proteasome subunit beta type-5 PSB5
P19793 Retinoic acid receptor RXR-alpha RXRA
P50120 Retinol-binding protein 2 RET2
P0O0441 Superoxide dismutase [Cu-Zn] SODC
Q93009 Ubiquitin carboxyl-terminal hydrolase 7 UPB7
P40337 von Hippel-Lindau tumor suppressor VHL

Table 1. The 25 proteins we sampled from the 200 most-studied human proteins.




SHOW ME THE DATA: You can find the metadata, BLAST and Foldseek hits,
protein structures, and all the results from the pipeline for these 25 proteins on
Zenodo (DOI: 10.5281/zen0do.8377393).

We evaluated the quality of the clusters generated using the cluster compactness
metric discussed above (Figure 8, A). In addition to protein length and average pLDDT,
we explored how metrics such as the number of domains, the fraction sequence
identity to the input, and the TM-score to the input impacted compactness (Figure 8,
B-F). For each of these metrics, we determined the value for every protein in each map
and examined how their distributions varied in comparison to compactness (Figure 8).
Among the 25-protein sample, shorter proteins with higher pLDDT and fewer domains
tended to result in maps with more compact clusters than longer proteins with lower
average pLDDT values and more domains (Figure 8, B-D). Proteins with lower pLDDT
values could be lower-confidence predictions, but they could also be proteins with
more intrinsic disorder. In either case, these proteins might not be appropriate for
ProteinCartography analysis using structural comparisons. Additionally, AlphaFold
structures are treated as rigid bodies and are aligned as such in the alignment step of
our analysis. Slight differences due to protein dynamics could therefore be missed by
alignment. This is something to consider especially when working with proteins that
contain multiple domains connected by flexible regions (Figure 8, D).

The TM-scores shown here are calculated during the all-v-all structural comparison,
which does not evaluate every possible protein-protein comparison comprehensively
and therefore may contain missing values. For more information see the “Construct

all-v-all similarity matrix” section. This means that zeros don’t necessarily represent

non-matches. They just represent less good matches relative to the rest of the
proteins. To visualize the median without the presence of these zero-values, we supply
a median TM-value for each analysis with (white circle) and without (white diamond)
zeros (Figure 8, F).


https://zenodo.org/record/8377393
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Figure 8

Protein characteristics affect the output of the ProteinCartography
pipeline.

(A) Cluster compactness for the analyses conducted using each of the 25

sampled proteins as input proteins.

(B-D) Length (B), average pLDDT (C), and number of PFAM domains (D) of all
the proteins identified and clustered in each analysis. The black dot
represents the input protein and the white dot represents the median. Note
that smaller proteins with higher pLDDT and fewer domains tend to have

more compact clusters.

(E-F) Fraction sequence identity (Frac. seq. ident.) (E) and TM-score (F)
compared to the input for each protein identified and clustered in each
analysis. Green represents Foldseek hits identified based on structural
similarity, and pink represents BLAST hits identified based on sequence
similarity. White circles show the median for each, and the white diamonds
show the median for each with the zeros removed.



There are also certain proteins that are not well represented in the AlphaFold
database. For example, viral proteins have been excluded from the current draft of the
AlphaFold database, meaning searches involving these proteins will be limited [S][6].
We wanted to know whether the taxonomic diversity or total number of hits in an
analysis impacted pipeline performance. The number of hit proteins didn’t correlate
well with cluster compactness for our limited analysis (Figure 9, A, B, F). However, there

are clear cases when having very few proteins resulted in poor analyses. For example,
NCOAZ2 only had 93 proteins identified and had the lowest cluster compactness
(Figure 9, D, F). We also observed that more diverse taxonomic distributions may result
in more compact clusters, but need additional analyses to determine if this trend holds
(Figure 9, C-F).
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Protein family diversity may impact clustering.

(A) Bivariate plot showing the number of combined hits (Foldseek and

BLAST) vs. cluster compactness for the 25 proteins sampled.

(B) Bivariate plot showing the number of hits, either Foldseek (green) or
BLAST (pink) vs. cluster compactness for the 25 proteins we sampled.

(C) Bivariate analysis showing the number of species in each analysis result
vs. the cluster compactness for each of the 25 analyses.

(D) Proteins are ordered by their cluster compactness, as represented by the
colored bar — more compact clusters are at the top and less compact
clusters at the bottom.

(E) For each of the 25 analyses, we sorted hits into a broad taxon, and
graphed the proportion of the total number of hits in each broad taxon
bucket as a bar chart.

(F) The total number of proteins represented in each analysis.



In summary, we advise you to consider the characteristics of each input protein when
analyzing it with the ProteinCartography pipeline, as not all proteins are equally
appropriate for structural comparison and could instead be evaluated using sequence,
shapemer (or short fragment of a protein structure), or protein language model
embedding comparisons. We will continue to use these 25 proteins throughout the
following sections to evaluate our methods.

SHOW ME THE DATA: You can find the metadata, BLAST and Foldseek hits,
protein structures, and all the results from the pipeline for these 25 proteins on
Zenodo (DOI: 10.5281/zen0do0.8377393).

Protein searches

Once you've designated an input protein or proteins, the first step of the
ProteinCartography pipeline involves searching protein structure and sequence

databases.

Sequence-based search

The pipeline performs a sequence-based search for each input protein using NCBI
Protein BLAST to search against the full NCBI non-redundant (nr) database [19]. It runs
BLAST using a query to the web API. You can customize the number of hits returned
with a default cutoff of 3,000. In general, there is no taxonomic constraint applied.
Because we're querying such a large database and asking for relatively few hits, we
also don't generally use an E-value cutoff for our BLAST search. In our runs so far, the
median sequence identities for our BLAST hits have been consistently higher than for
our Foldseek hits, and generally above 50% (Figure 8, E). However, including quality

cutoffs in our BLAST search or including the ability for users to set a cutoff for this is

something that we hope to include in future versions.

From the BLAST search, the pipeline retrieves a list of RefSeq or GenBank identifiers.
To retrieve predicted structures from AlphaFold and retrieve protein metadata, it maps
these identifiers to UniProt accessions [17]. At this step, some proteins are usually lost
because not all proteins present in the non-redundant NCBI database are present in
UniProt.


https://zenodo.org/record/8377393
https://doi.org/10.5281/zenodo.8377393

Structure-based search

For the structure search, the pipeline uses a Foldseek web API query to search against
the AlphaFold/UniProt50 v4, AlphaFold/Swiss-Prot v4, and AlphaFold/Proteome v4
databases using the 3Di search mode with no taxonomic restraints [1][5][6][16]. The
AlphaFold/UniProt50 v4 database uses MMseqs2 clustering at 50% sequence
identity and returns a representative from each cluster that has the highest structure
quality (average pLDDT) instead of all of the most closely related proteins [16]. The
AlphaFold/Swiss-Prot v4 database contains UniProt proteins with high-quality
annotations [31]. The AlphaFold/Proteome v4 database contains proteomes from a set
of 48 model organisms and global health-related organisms [6]. The pipeline currently
runs the Foldseek structure-based search step using a query to the web API, and each
database search returns a maximum of 1,000 sequences. This is a constraint set by
Foldseek.

Aggregate, filter, and download hits

Using the combined set of BLAST and Foldseek hits, the pipeline queries the UniProt
database to retrieve metadata for each protein, including the protein name, gene
name, organism, protein length, cross-references to annotation databases such as
Pfam and InterPro, and other metadata (see example TSV) [17][32][33]. It then uses
this metadata to filter and remove hits based on user-defined size cutoffs (if applied),
whether the protein is marked as a fragment, and whether the protein is marked as
inactive.

Next, the pipeline downloads the structure files (PDB files) for the proteins that are in
the AlphaFold database, which includes only protein structures predicted using
AlphaFold [5][6]. We again lose some proteins at this step that were identified via
BLAST but don’t have AlphaFolded structures, but one could use AlphaFold or
ESMFold to fold these unfolded proteins [4][5].

Protein structure comparisons


https://github.com/Arcadia-Science/ProteinCartography/blob/v0.4.0-alpha/examples/features_file.tsv

Construct all-v-all similarity matrix

Once all of the structures have been obtained and compiled in a single folder, the
pipeline uses Foldseek to compare every protein structure to every other protein
structure to create an all-v-all comparison for network analysis [1][16][34]. This works
by first performing foldseek search onthe user’s machine, this time searching each
hit against every other hit that was downloaded from AlphaFold [1]. From these
alignments, the pipeline obtains E-values for each comparison. The pipeline uses the
default E-value threshold of 0.001 set by Foldseek to determine which pairs of proteins
to compare using TM-align. The pipeline then aligns any pairs of structures with E-
values that satisfy the threshold using foldseek aln2tmscore to obtain a TM-score
(template modeling score). A TM-score is a metric for the structural similarity of protein
structures that ranges from 0-1[20]. A TM-score of 1 means the compared structures
are identical, while two protein structures with scores above 0.5 are usually similar and
proteins with scores of 0.17 or lower are likely unrelated [20]. Any comparisons that did
not satisfy the threshold E-value do not return a TM-score; we set these missing values
to O for the purposes of clustering. In addition to the E-value threshold, foldseek
search defaults to returning a maximum of 1,000 TM-scores for each protein
analyzed, including the input. This means that not all comparisons will have calculated
TM-scores. We also treat these missing values as O for the purposes of clustering.

This type of thresholding is common in network analyses to help slice the space into
groups of differing depths [35][36][37], but we have not yet determined the optimal
thresholding parameters for our analyses. Consequently, in our visualizations, there is
an inflated number of comparisons with a TM-score of O — users should treat these
zeros as missing values, rather than a true absence of structural similarity. In future
versions of the pipeline, we plan to explore these thresholds in a more principled way
to determine what is appropriate for different types of analysis and will provide
configuration parameters for users to tune the stringency of filtering. We will also

provide complete TM-score calculations for input proteins for visualization purposes.

Next, the ProteinCartography pipeline arranges TM-scores into an all-v-all similarity
matrix. Additionally, the pipeline adds the score of each hit protein compared to the
input protein(s) to the output TSV file and uses it in the final visualization steps.



Cluster proteins

After generating an all-v-all similarity matrix, the pipeline groups proteins into clusters
based on how similar they are to each other. Originally, we used Foldseek’s TM-align
greedy set clustering algorithm to generate structural clusters [16]. Foldseek’s
clustering algorithm utilizes Linclust and MMseqgs2 [16][38][39]. Briefly, protein
structures are represented as 3Di sequences [1]. Linclust extracts short sections of
these sequences and uses them to sort the sequences into groups. The longest
sequence in each group is identified as the representative. Foldseek’s structural
clustering uses the representatives in an initial structural alignment, the output of
which feeds into MMseqgs2 clustering. During this step, MMseqs2 clusters
representatives based on TM-score. MMseqgs clustering is a greedy set-cover
algorithm, meaning that it chooses a single representative structure and adds itinto a
new or existing cluster and repeats this until all sequences belong to clusters [38].

In our 25-protein analysis, we observed that many analyses only contained a small
number of structural clusters as defined by Foldseek. 15 out of 25 maps contained
fewer than five clusters (Figure 10). Moreover, these clusters didn’t tend to be very
compact. While Foldseek’s clustering method may be appropriate for some uses, we
wondered whether other clustering algorithms may be better suited for our intended

use case.

In particular, we were interested in Leiden clustering, a method that has become
popular for identifying groupings within single-cell expression networks [21][40][41].
Leiden clustering is another algorithm used to identify communities, or preliminary
clusters, within a pre-existing network in a three-phase process. First, proteins are
grouped to find the highest quality community separations. Next, the algorithm
undergoes a refinement step where proteins can be switched to other communities.
Finally, the network is aggregated [21]. This process is generally done several times.
We used the implementation of Leiden clustering found in the popular single-cell
RNA-seq analysis package Scanpy [41]. This implementation takes a matrix of counts
and performs principal component analysis (PCA), generating a neighborhood graph
using an implementation of uniform manifold approximation projection (UMAP). We
used parameters n_pcs = 30 and n_neighbors = 10 for this implementation of Leiden
clustering, and performed Leiden clustering until optimized (scanpy default,

n_iterations = —1).


https://scanpy.readthedocs.io/en/stable/
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(B) Number of clusters for Leiden clusters
(left) and structural clusters calculated
using the Foldseek clustering algorithm

(right) for each of the 25 analyses.

(C-D’) Bivariate analysis of protein length
vs average pLDDT for the full 200 most-
studied proteins, with the sampled
proteins represented by colored dots and
the non-sampled proteins shown in light
gray. Dots are colored based on cluster
compactness of Leiden clusters (C),
cluster compactness of structural
clusters (C'), number of Leiden clusters
(D), and number of structural clusters (D’).

To compare the clustering methods, we applied each to the 25 proteins we sampled in
Figures 7-9 (Figure 10). To determine which algorithm better sorted the proteins into
clusters, we measured cluster compactness and number of clusters in the resulting
map (Figure 10). In all 25 cases, the structural similarity scores within clusters were

higher when using Leiden clustering (Figure 10, A, C, C’) and there were more clusters
(Figure 10, B, D, D), suggesting that Leiden clustering might be more appropriate for
identifying sub-groups within groups of structurally similar proteins. We hypothesize
that Foldseek’s structural clustering might be better for larger-scale analyses looking
across families, but did not test this.

The current version of the pipeline provides both structural clustering using Foldseek’s
algorithm and Leiden clustering results in the final “aggregated_features.tsv” file, but it
defaults to Leiden clustering in plots and analyses. We have not fully optimized the
standard parameters and this could contribute to the differences in clustering quality
for different protein families. In future iterations of the pipeline, we hope to experiment
more with these parameters to develop more generalizable clustering approaches.

Cluster analysis



Calculate cross-cluster similarity matrix

To allow for better understanding of the quality and content of the clusters, the pipeline
calculates a cross-cluster similarity matrix (Figure 2, Figure 11). For each cluster, it

calculates the mean TM-score of all structures in that cluster versus all other proteins
in each other cluster. Clusters with a greater mean cross-cluster TM-score are more
structurally similar (with a maximum value of 1). Within this visualization, the y-axis
represents the protein that is treated as the query protein, while the x-axis represents
the target protein in each comparison. The diagonal of the matrix represents the
similarity of all proteins within a cluster, which we can use to assess cluster
compactness (cmx), or the average value of the diagonal. Clusters with a low within-
cluster mean TM-score are likely to contain assortments of unrelated or dissimilar

proteins. The pipeline visualizes the results of this comparison using a heatmap.
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Cross-cluster similarity matrices allow for evaluation of clustering
effectiveness.

(A, C, E, G) Structures of Hemoglobin subunit beta (A), Peptidyl-prolyl cis-trans
isomerase A (C), Retinol-binding protein 2 (E), and Complement factor H (G)
structures. In all cases the color of the structure responds to the per-residue
pLDDT value represented in the key on the right. The cmx value is the “cluster
compactness” score for each analysis. The number under each protein name is
the corresponding accession number.

(B, D, F, H) Similarity matrices for Leiden clusters produced from the analyses for
Hemoglobin subunit beta (B), Peptidyl-prolyl cis-trans isomerase A (D), Retinol-
binding protein 2 (F), and Complement factor H (H).

While the cluster compactness score provides a general idea of the quality of the
clustering, the heatmaps produced with each run of the pipeline can help users more
thoroughly evaluate clustering effectiveness for their analyses. We show heatmaps
from analysis of four example proteins, hemoglobin subunit beta (HBB), peptidyl-prolyl
cis-trans isomerase A (PPIA), retinol-binding protein 2 (RET2), and complement factor
h (CFAH) from our sample of most-studied human proteins (Figure 11). These examples
reflect a range of potential outcomes for clustering. The first three proteins all have
high cluster compactness (HBB: 0.79, PARKY7: 0.71, RET2: 0.85), but their heatmaps
reflect variable levels of interpretability. Clusters in the HBB analysis show a high level
of compactness, with clusters 00, 02, 03, 04, 06, 07, and 08 showing mean TM-scores



> 0.5 along the diagonal (Figure 11, A-B). However, examining the other cells of the
matrix reveals that several of these clusters may not be very distinct — for example,
clusters 00, 03, 04, and 08 show high levels of mutual similarity, suggesting that these

clusters might be combined into a single larger cluster (Figure 11, A-B).

The PPIA analysis shows a similar result, where several clusters could potentially be
fractions of a larger cluster (Figure 11, C-D). Particularly interesting with the PPIA
matrix, there are strong horizontal lines that suggest there are some clusters that are
similar to all other clusters (Figure 11, C-D). The RET2 analysis shows a more extreme
example: most clusters, with the exception of 01 and 12 (and, to a lesser extent, 04 and
10) show relatively strong similarity to all other clusters, suggesting that the clustering
analysis was not able to identify distinguishable sub-groupings (Figure 11, E-F). In some
cases, such as for large proteins like CFAH, clustering does not appear to produce
compact or distinct clusters (Figure 11, G-H). For these types of proteins, the large
number of domains and lower overall pLDDT might impede structural comparisons
due to the limitations of rigid-body structural comparison, and other types of
comparison networks — such as sequence, shapemer, or protein language model
embedding — might be more amenable to clustering analysis.

Perform semantic analysis

The pipeline retrieves protein metadata from UniProt, which can include gene and
protein names [17]. While not always reliable, especially for understudied organisms,
these annotations can provide a more human-readable method of understanding what
kinds of proteins exist in each cluster [42]. To summarize protein annotations from
each cluster, we implemented a visualization that we refer to as “simple semantic
analysis.” For each Leiden cluster, the pipeline aggregates the most frequently
occurring annotations and individual annotation words, and represents these as a

ranked bar chart and proportional word cloud, respectively (Figure 5).

For example, the semantic analysis plot for the MAPK10 analysis is shown in Figure 5.
Our input protein is in LCO2, where the most represented annotation is “Stress-
activated protein kinase JNK (EC 2.711.24)". In the word cloud, we can also see,"JNK,”
“Mitogen-activated,” and “MAPK,” all suggesting that clustering analysis correctly
aggregated these proteins together, since we know that MAPK10 is a member of the
JNK family. LC11, a cluster composed of primarily plant proteins, has the top annotation
“Mitogen-activated protein kinase (EC 2.7.11.24),” suggesting it comes from the same



enzyme class, EC 2.711.24. For LC12, a primarily fungal cluster, the top annotation is
“Mitogen-activated protein kinase HOG1 (MAP kinase HOG1) (EC 2.7.11.24),” which is
consistent with the literature showing that the JNK pathway is similar to the fungal
HOG pathway [43]. This analysis can provide broader biological context for the
contents of each cluster.

Visualization

Create maps

The pipeline uses standard dimensionality reduction approaches to create a visual
representation of protein space. It starts by using the original all-v-all similarity matrix
to calculate a principal component analysis (PCA) with 30 components [44]. The PCA
results are then passed to an analysis to calculate the t-distributed stochastic
neighbor embedding (t--SNE) and the uniform manifold approximation projection
(UMAP) [22][23]. For the t-SNE, it returns two components, the perplexity is set to 50,
and the number of iterations to run is set to 2,000. For the UMAP, it returns two
components, the number of neighbors is set to 80, and the minimum distance
between neighbors is set to 0.5. The parameters used here are defaults used in other
analogous analyses, but in the future, we plan to optimize them for our particular use
cases.

Both UMAP and t-SNE are non-linear, graph-based methods for dimensionality
reduction [22][23]. They are both meant for visualization — we do not treat the 2D
maps generated by these techniques as fully representative of the higher-dimensional
relationships between proteins. They each follow the same general principle: create a
high-dimensional graph, then reconstruct it in a lower-dimensional space while
retaining the structure. t-SNE moves the graph from high dimension to lower
dimension point by point, while UMAP compresses the high-dimensional graph [22]
[23]. We provide both in this pipeline so that the user can choose which visualization is
easier to navigate for each protein family. Often, t-SNE creates more space between
clusters, while the UMAP plot appears more connected. However, users should not
interpret distances in the 2D axis of UMAP or t-SNE plots as quantitative.



Generate interactive plots

Finally, the pipeline uses all the data collected above to create an interactive and
navigable map that you can use to explore the protein family (Figure 2, Figure 3). The

pipeline produces HTML file maps that allow dynamic visualization, built using the
Plotly Python package [24] This allows you to interact with graphs and apply multiple
overlays as shown in the above examples and detailed more thoroughly below. A
toggle button allows you to see the input protein(s) in the map as black, four-pointed
star markers, and metadata for each protein is displayed in a tooltip when the mouse
cursor hovers over a point. In addition to the interactive plot, the pipeline produces a
file that contains all the UniProt features along with the information calculated
throughout the pipeline for each protein.

Plot overlays

To empower researchers and make these plots maximally useful, the pipeline has a
color drop-down that colors points according to protein metadata. The default view
colors each point by its Leiden cluster. Clustering (separating the protein structures
into similar groups based on the all-v-all similarity matrix) and mapping (visualization
via dimensionality reduction) take place independently in the pipeline. However, at this
final step, these two representations of protein space are combined when the results
of the clustering analysis are overlaid onto the map.

You can color points by the following:

- Leiden cluster

« Annotation score, a metric to measure the annotation content of a UniProt protein

[17]

- Broad taxon, which can be either eukaryotic- or bacterial-focused with this current

version of the pipeline; see the GitHub README for how to customize the taxonomic

groups
- Length
« Source (Foldseek vs. BLAST)

« TM-score vs. the input protein (this TM-score is the value from the Foldseek local

search and may not reflect the true TM-score due to E-value thresholding)

« Fraction sequence identity vs. the input protein


https://plot.ly/
https://github.com/Arcadia-Science/ProteinCartography/blob/v0.4.0-alpha/README.md

- Average pLDDT of the protein

- [Experimental] Concordance vs. the input protein (see below)

Using this visualization and the accompanying file containing this information in a
tabular format, we can begin to make predictions and hypotheses about the
relationship of proteins to each other and even how these proteins might function.

Additional methods

We used ChatGPT to write, clean up, and comment code. We also used it to suggest
wording ideas that we edited extensively.

Next steps

This pipeline is a work in progress — we are actively building and adding features. Many
of the features we hope to improve and add are recorded as GitHub issues in the

ProteinCartography GitHub repository. As we move forward, we hope to build in four
important areas: broad software improvements, validation, new analysis features, and
linkages with other software packages. We lay out our plans below, but would love
feedback on what you'd like to see us tackle next.

Broad software improvements

We built the ProteinCartography pipeline using Snakemake, which lets us develop
flexible workflows that can run on most computers. However, we plan to provide a
Nextflow version of the pipeline in the future. Additionally, we plan to decrease our
reliance on APls in general, but in particular, we hope to avoid using the Foldseek API.
This will also allow us to support different databases for comparisons. It's really
important to us that this pipeline is not just useful, but also usable, so we plan to work
on increasing usability and adding features that allow researchers to more easily
interpret the space.


https://github.com/Arcadia-Science/ProteinCartography/issues

Validation

To provide users with more definitive and useful information, we must first provide
more validation and principled statistical analysis. We plan to develop a clearer
understanding of what characteristics make proteins amenable to analysis using the
pipeline by performing additional large-scale analyses of diverse proteins and
performing statistical tests to understand how well different protein features correlate
with pipeline results. To perform such validation, we also need to expand our metrics
for evaluating pipeline performance from focusing on cluster compactness to also
include cluster distinctness, evaluation of over- and under-clustering, annotation
distinctness (how well annotations line up with clusters), and other measures. By
assessing these metrics, we will also be able to develop automated methods for
parameter selection to identify sensible defaults that work well across protein families
of diverse size and composition.

Additionally, we plan to explore the current parameters of the pipeline and how we

might be able to optimize them for different use cases.

Finally, we are currently working on in-lab biochemical validation to show that the
interesting predictions and hypotheses we have been able to make about protein
function based on the results of the pipeline are actually indicative of true functional
differences. We're looking for proteins with established purification protocols and
assays that come from diverse and interesting protein families. If you have any
suggestions for proteins that fit these criteria and would be especially useful for this
type of biochemical validation, please let us know in a comment!

New analyses and features

While our pipeline is able to aggregate results from sequence and structural searches
and provide maps for exploration, the pipeline does not yet perform detailed analysis
of the features within proteins that make them distinct from each other. We'd like to
add analyses that allow us to identify the specific regions of proteins that result in
differences between clusters.

We want to make overall exploration of the maps easier and more intuitive by
employing analyses to identify interesting proteins or outliers that might be of
particular interest. We also want to find easy ways of pointing out which areas of the


https://bit.ly/3xo7dkm

maps have high-quality clusters and which areas of the map users should consider
avoiding. We'd like to find ways to identify the specific structural features between
clusters that make them unique.

For example, we are interested in identifying proteins that are convergently evolved —
composed of divergent sequences but which fold into similar structures — as well as
proteins with high sequence identity but apparently divergent structures. The current
version of the pipeline provides a rudimentary measure of the relationship between
sequence identity and structural similarity, which we call “concordance.” This is a
simple measure that subtracts structural similarity from sequence identity. More
positive values mark proteins with greater structural similarity than sequence identity,
while negative values mark the opposite. While the current measure is not statistically
principled, as TM-score and sequence identity do not follow the same linear scale, we
are exploring methods to compare sequence identity to structural similarity to identify
proteins that meaningfully diverge or converge from expectations.

FEATURE REQUESTS: Are there features that would be useful to you? Let us
know in a comment on this pub!

Software linkages

We'd like to incorporate phylogenetic information and sequence information to
complement the structural information that the pipeline provides. Additionally, we'd like
to integrate this pipeline with other resources from Arcadia, including NovelTree and
PreHGT [45][46].

TRY IT: The ProteinCartography pipeline is available here, along with instructions
to get started.

If you use it, let us know in a comment on this pub! We'd love to hear your use case and
what you learned from your own protein mapping. Additionally, we welcome outside
suggestions as GitHub issues and contributions through pull requests.



https://bit.ly/3xo7dkm
https://github.com/Arcadia-Science/ProteinCartography/tree/v0.4.0-alpha
https://github.com/Arcadia-Science/ProteinCartography/issues

What do you think?

We'd particularly interested in getting your feedback on the following:

Would this kind of pipeline be useful for your own work?
How could we make it more useful for you?
Do you have any recommendations for types of analyses or validation?

Do you have any recommendations for protein families that you think would be

particularly interesting to look at?
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