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A new R package,
sourmashconsumr, for
analyzing and visualizing
the outputs of sourmash

The sourmash Python package produces many outputs that describe
the content and similarity of sequencing data. We developed a new R
package, sourmashconsumr, that lets a wider range of users easily
load, analyze, and visualize those outputs in R.
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Purpose

Bioinformatics tools are written in many software languages and produce varied
outputs. This is in part because different software languages excel at different tasks —
for example, Python is good at text parsing, while R is good at statistics and
visualization. The variation in the tool space creates barriers to use due to the required
language-specific knowledge.
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Sourmash is a Python package that facilitates quick insights into sequencing data
through rapid comparisons. To take advantage of visualization and statistical analysis
tools, it is often helpful to analyze the outputs of this tool in R. We built
sourmashconsumr to make this easier in our own work and for others comparing large
amounts of sequencing data, doing metagenomics, or doing other sequencing quality
control. This package provides a series of parsing functions to bring the sourmash
output files into R and features visualization and analysis functions commonly used to
interpret sequencing data.

« This pub is part of the project, “Useful computing_at Arcadia.” Visit the project

narrative for more background and context.

. The sourmashconsumr R package is available at this GitHub repository.

Documentation for the package is available here.

- All code associated with figures and validation is available in this GitHub
repository.

Why it matters

We often use sequencing data to help answer biological questions and generate new
hypotheses. One of the goals of Arcadia’s software team is to empower biologists to

analyze their own data, and one way to achieve that is by packaging code that
accomplishes routine tasks so that it's easier for diverse scientists to jump into their
own data.

In this pub, we're sharing a tool that allows anyone working with sequencing data to
analyze sourmash outputs in R, a language that excels at statistical analysis and
visualization. We thought it would be especially helpful to include a standard set of go-
to visualizations that we wouldn’t need to build from scratch every time we analyze a
new data set. With this package, we anticipate that scientists with a wider range of
computational literacy will be able to directly play with their data, giving them more
ownership and creativity.
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The problem

Some biological computing tools, statistical methods, or visualizations are only
available as R packages [1][2][3]. To access these methods, we need to load and

parse biological data into the appropriate, often tool-specific, format.

Sourmash is a Python package that quickly compares potentially very large sets of
DNA and protein sequences [4]. This functionality can be used to, for example, cluster
transcriptomes [5] or genomes [6], to identify the taxonomy of new isolate or
metagenome-assembled genomes [7], or to determine the taxonomic composition of
a new metagenome sequence by comparing it against a database of reference
genomes [8]. Sourmash outputs text files in JSON and CSV format that contain
information about the sequences themselves or about the similarity between a
sequence and other sequences. These text files can be used for many downstream
applications, including visualization of pairwise sample similarity [5] or taxonomic
composition [8], machine learning [9], differential abundance analysis [10], or to

estimate pangenomes [11].

The process of transforming the output of a sourmash command into a downstream
analysis requires a substantial amount of code, much of which can be standardized
between use cases (e.g. parsing). The sourmash Python API provides this functionality
in the Python language, thereby lowering the bar for analysis of these outputs in
Python. We sought a similar code base that would let us analyze sourmash outputs in
R.

Our solution

We wrote an R package, sourmashconsumr, which provides parsing, visualization, and

analysis functions to operate on the outputs of the sourmash Python package in R.

The resource

Below, we describe the main functionalities encoded in the sourmashconsumr R
package (Figure 1). In addition to this overview, the package itself contains function

documentation and a vignette that demonstrates how to use the code.



https://arcadia-science.github.io/sourmashconsumr/reference/index.html
https://arcadia-science.github.io/sourmashconsumr/reference/index.html
https://arcadia-science.github.io/sourmashconsumr/articles/sourmashconsumr.html

The sourmashconsumr R package is available at this GitHub repository (DOI:
10.5281/zenodo.7591833) under an MIT license. All code associated with
figures and validation is available in this GitHub repository (DOI:
10.5281/zen0d0.7591845).
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Figure 1

Overview of functionality encoded by the sourmashconsumr R
package.

The sourmashconsumr R package operates on text files output by
specific commands in the sourmash Python package (y-axis). It
works with the output of sourmash sketch (JSON), compare (CSV),
gather (CSV),and taxonomy annotate (CSV). At a high level, the
functions in the sourmashconsumr package either read and parse,
plot, analyze, or convert the outputs of these commands. The x-axis
summarizes the functionality encoded by the sourmashconsumr
package, and the check marks designate which sourmash output
files the functionality applies to.
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Reading sourmash outputs into R

The sourmashconsumr package provides parsing functions to read the output of
sourmash sketch, compare, gather ,and taxonomy annotate into R astidy data
frames. These function names begin with read* . Each function takes the path to one
or many files or URLs and returns a single data frame. These data frames can then be
used to further analyze or visualize the input data using other code or R packages.

Visualizing the outputs of sourmash

The majority of functions in the sourmashconsumr package implement common
visualizations for each of the four output types that the read* functions parse. These
function names begin with plot* . When possible, we encode visualizations as
ggplot2 objects so that the user can add additional layers to control the plot aesthetics

[12].

Below, we show some of the outputs of these functions using the data sets built into
sourmashconsumr: six stool microbiome shotgun metagenome samples from the
Integrated Human Microbiome Project Inflammatory Bowel Disease cohort [13], a
longitudinal survey of the emergence of inflammatory bowel disease (IBD). The
samples in the example data are all starting samples taken from different individuals.
All individuals were symptomatic at this initial time point, but three individuals were
diagnosed with Crohn’s disease (CD), a type of IBD, by the end of the year, and three
individuals were not (Non-1BD).



SRA accession number | Group
SRR5936131 CD
SRR5947006 CD
SRR5935765 CD
SRR5936197 Non-IBD
SRR5946923 Non-IBD
SRR5946920 Non-IBD
Table 1

Example data set distributed with the sourmashconsumr package.

Signatures

Sourmash signhatures contain one or multiple sub-sampled representations of DNA or
protein sequences (FracMinHash sketches) [14][15]. Each FracMinHash sketch
contains hashes (and optionally, hash abundances) that represent a subset of k-mers
from the original sequences. The sourmash sketch command consistently
subsamples k-mers across different sequences, so we can compare (e.g. intersect)
sketches to understand sequence similarity. While the command line function

sourmash compare estimates similarity and containment metrics, sourmashconsumr
introduces upset plots that operate directly on sets of signatures read into R with the
read_signature() function (Figure 2). These plots operate directly on the hashes in
the FracMinHash sketch (e.g. subsampled k-mers) and so can help build intuition for
the amount of sequence shared between sets of samples. Upset plots can work on
any sighatures but are most meaningful when applied to sketches built with the same
k-mer size and scaled value. In addition to upset plots built from signatures that
represent single sequencing libraries, the sourmash command line function sourmash
sig combine can combine signhatures (e.g. from the same group; cases vs. controls)
prior to reading and plotting the signatures with sourmashconsumr [9].



#scaled k-mers
2
22,

100

<rq— L0 N HHOONND~©O
NN NNNNNNHHHHHﬁSE ﬂ

SRR5946923 @
SRR5936197 :EI
SRR5947006 @
SRR5936131 .
SRR5935765

SRR5946920

Groups
Figure 2

An upset plot built from sourmash
signatures representing stool microbiome
shotgun metagenomes.

Upset plots are alternatives to venn diagrams
that show the intersection size between
different groups of samples. In the above plot,
we see that the majority of k-mers present in
any metagenome are distinct to that
metagenome. Groups with fewer than 10
shared k-mers are not displayed.

Compare

sourmash compare estimates pairwise similarity or containment between many
signatures. The sourmashconsumr package provides functions to plot the CSV output
as a clustered heatmap (Figure 3, A) or to process the CSV via multidimensional

scaling (MDS) and produce a plot (Figure 3, B).
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Figure 3

Visualizations that sourmashconsumr produced from the

output of sourmash compare .

(A) Clustered heatmap representing sample similarity. Lighter colors
represent higher similarity with the diagonal axis representing one
(100% similar).

(B) Multidimensional scaling plot where points that are more similar
are grouped more closely together. The groups refer to stool
microbiome metagenome samples of individuals with (“CD”) and
without (“Non-IBD”) Crohn'’s disease.

Gather

Sourmash gather compares a query signature against a database of reference
signatures and outputs the minimum set of reference matches that contain all of the k-
mers in the original query signature [14]. Sourmash gather is mostfrequently applied
to metagenome profiling where a query metagenome is compared against a database
of reference genomes (e.g. GenBank [16], Genome Taxonomy Database [17]) to
determine which genomes are in the metagenome (see Figure 10 for an additional

explanation of the gather algorithm). Recent studies demonstrated that sourmash
gather provides accurate taxonomic profiles for metagenomes sequenced with both
long and short reads [14][18]. In sourmashconsumr, the first visualization for the output
of sourmash gather details the fraction of a sample that is classifiable versus



unclassifiable (Figure 4, A). Because we can use multiple databases in one run of
sourmash gather , we can color the plot based on the database from which the match
originated. The second visualization is an upset plot that depicts the intersection of

reference genomes identified in each sample (Figure 4, B).
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Visualizations that sourmashconsumr produced from the
output of sourmash gather .

(A) A bar plot summarizing the fraction of each metagenome
sample that is classifiable against the GTDB representative
database (“GTDB rs207 reps").

(B) An upset plot depicting the genome matches shared by different
sets of samples. Groups with fewer than 10 shared genome
matches are not displayed. See Figure 2 for an explanation of
upset plots.

Taxonomy annotate

sourmash taxonomy annotate adds taxonomic lineages to genome matches that

sourmash gather produces. This allows us to summarize genome matches up to
higher levels of taxonomy than genome or strain. Taking advantage of this, all
sourmashconsumr plots that visualize the output of sourmash taxonomy annotate
allow optional taxonomy agglomeration to any level of taxonomy (domain, phylum,
class, order, family, genus, species, and when provided by the taxonomy, strain). The



first visualization in sourmashconsumr for the output of sourmash taxonomy annotate
is a Sankey diagram, which can be applied to one or many samples (Figure 5, A).
Sankey diagrams depict the flow from one set of values to another and, when applied
to taxonomic profiles of metagenomes, show the taxonomic composition at
increasingly finite resolution. The second visualization is an upset plot that depicts the
presence of taxonomic lineages across samples (Figure 5, B). Since upset plots are

based on the presence or absence of lineages, the counts in the upset barplot do not
reflect the abundances of lineages observed at a given taxonomic level, but rather how
many lineages are shared between samples at that level. The last visualization is an
alluvial plot for time series samples that shows how relative abundances of taxonomic
lineages shift over time (Figure 5, C).
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Figure 5

Visualizations sourmashconsumr produced from the output of

sourmash taxonomy annotate .

(A) A Sankey diagram produced from one stool microbiome
metagenome from an individual with Crohn’s disease, SRR5935765.
We performed taxonomic agglomeration at the order level. While
colors help draw attention to delineations between arms of the
diagram, they do not encode information.

(B) An upset plot depicting the shared taxonomic lineages between
different sets of stool microbiome metagenome samples of

individuals with and without Crohn’s disease. We performed



taxonomic agglomeration at the order level and colored the plot by
the phylum of the shared lineages. See Figure 2 for an explanation
of upset plots.

(C) A time series alluvial plot depicting the change in taxonomic
lineages over time in a time course of infant stool microbiome
metagenomes (see the “New functionality” section below for a

description of the data set). We performed taxonomic
agglomeration at the genus level. Each ribbon represents the
fraction of the metagenome attributable to that taxonomic lineage
at a given time. Lineages are labeled by name on the plot and by fill
color. Only lineages that comprised at least 0.15 of the sample at a
given time are labeled. Lineages that are low-abundance
throughout the entire time course are grouped into “Other.”

Converting sourmash outputs into objects
compatible with other R libraries

Many popular biological computing R packages require data to be in a specific format
to enable the functions in those packages to work upon the data. Sourmashconsumr
provides parsing functions to transform the output of sourmash taxonomy annotate
into phyloseq [2] and metacoder [3] objects. After conversion to these formats, users
can use the functions in those packages on sourmash results (Figure 6).
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sourmashconsumr provides functions to convert the output of
sourmash taxonomy annotate into other package ecosystems
inR.

Metacoder heat tree plot representing the order-level taxonomic
lineages present in six stool microbiome metagenomes from
individuals with (n = 3) and without (n = 3) Crohn’s disease. The
nodes are labeled with taxonomic lineage assigned with sourmash
gather and sourmash taxonomy annotate by comparing the
metagenome samples against the Genome Taxonomy Database.
Node size reflects the k-mer abundance of each lineage across all
samples. Node colors represent log2 ratio for median proportions
when comparing order-level k-mer abundance between individuals
with and without Crohn'’s disease as calculated by the metacoder
function compare_groups() . Green nodes are more abundant in
individuals with Crohn’s disease.

Both phyloseq and metacoder objects contain abundance information about
taxonomic lineages in the data they represent. To derive this information,
sourmashconsumr calculates the abundance-weighted number of matched hashes
(subsampled k-mers) for each genome match returned by sourmash gather . It uses
the metrics unique_intersect_bp, scaled,and average_abund outputby sourmash
gather to infer this using the equation:



(unique_intersect_bp/scaled) * average_abund

unique_intersect_bp isthe estimated number of base pairs that would overlap
between the query and the genome match. It accounts for gather’s greedy best-
match-first algorithm and only counts overlaps once (e.g., once a sequence is
matched between a query and a genome, the sequence is removed from subsequent
rounds of matching; see Figure 10). Dividing this value by the scaled value resultsin
the number of distinct k-mers that overlap between the query and the genome match.
In the sourmash package, the scaled value controls the fraction of k-mers that are
represented in the FracMinHash sketch [14]. The most common scaled value is 1000,
so approximately 1/1000th of the k-mers in the original sequence become represented
in the sketch. Lastly, sourmashconsumr multiplies this number by the average
abundance of k-mers observed for a given genome match.

Representing abundances for genomes and lineages this way ensures that only k-
mers that sourmash actually counted are represented in the final object, and that
these estimates are not falsely inflated, which can impact downstream statistical
results. One side effect of this is that phyloseq and metacoder objects will be most
meaningful when they are built with samples analyzed with the same scaled value.

New functionality

The sourmash outputs are information-rich and can be used for downstream analyses
like machine learning [9] or differential abundance analysis [10]. Taking advantage of
these information sources, we implemented two new functions that work on the
outputs of sourmash sketch and sourmash taxonomy annotate ,t0 derive new
insights from sequencing data. The first uses sourmash signatures to estimate
sequencing saturation of a run and the second uses the output of sourmash gather
and sourmash taxonomy annotate to detect whether multiple strains of the same
species are present in a metagenome or other sequencing sample.

Estimating sequencing saturation using k-mers and
accumulation curves

Sample complexity, sequencing strategy (e.g. RNA-seq, whole-genome sequencing),
and sequencing depth determine whether a sequencing data set captures all of the



sequences contained in the original sample. It is difficult to determine the appropriate
depth at which to sequence a sample without a priori knowledge of the sample
complexity (e.g. genome size, number of transcripts expressed, microbial community
diversity), but sample coverage can impact biological insights [19]. While it is often
impossible to increase sequencing depth of a sample after initial sequencing efforts,
measuring sequencing saturation after the fact highlights whether the sequencing run
has captured the full diversity of the sample.

A variety of methods assess sequencing coverage [20][21][22]. We implemented an
approach in sourmashconsumr that builds an accumulation curve (rarefaction curve)
from abundance-weighted sketches and that uses the mean slope of the
accumulation curve to estimate sequencing saturation (Figure 7). Using signatures

built from raw or trimmed FASTQ reads, the function
from_signatures_to_rarefaction_df() wrapsthe vegan rarecurve() functionto
produce a data frame that represents k-mer accumulation as a function of data seen
[23]. Before building the data frame, we remove k-mers that only occur once in a
sample, as these likely represent sequencing errors (when we build sketches from long
k-mers, the majority of k-mers in a sketch will be from erroneous sequences given that
one sequencing error produces k erroneous k-mers [24]). However, filtering out k-mers
that only occur once per sample means that traditional methods to assess
accumulation curve saturation that rely on k-mers that occur once or twice in a data
set cannot be applied in this scenario [25]. To overcome this, we estimate sequencing
saturation by calculating the mean slope of the accumulation curve — samples with
higher mean slopes have a lower saturation as the accumulation curve does not
approach its asymptote. Two of the CD samples are sequenced more deeply than the

Non-IBD samples (Figure 7).
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Accumulation curves produced from
sourmash signatures.

Each curve represents one of six stool
microbiome metagenomes from individuals
with (CD, n = 3) and without (Non-IBD, n = 3)
Crohn’s disease. Curves are labeled by their
estimated mean slope. Curves that saturate
and have a lower mean slope represent
samples that have higher coverage. Mean
slopes are reported as labels at the end of
each curve.

To assess the accuracy of this method, we compared this approach against Nonpareil,
a software tool that estimates metagenome coverage and sequencing diversity [21].
Using a subset of samples shown in Figure 2 of the 2018 Nonpareil publication [21], we
compared the sourmashconsumr mean slope of the accumulation curve against the
Nonpareil diversity estimate. We removed samples sequenced with single-end runs,
samples with multiple SRA run accessions, and run accessions for which data was no
longer available, leaving a total of 70 samples from six biomes (Figure 8). Following the
Nonpareil recommendations, we first trimmed the metagenome FASTQ files using
fastp(-q 206, --length_required 24 )[26] before applying Nonpareil ( -T kmer )to
produce diversity estimates and sourmash and sourmashconsumr to produce
accumulation curves and mean slope estimates. We also obtained the data underlying
Figure 2 in the Nonpareil publication, which contained Nonpareil diversity estimates



and 16s rRNA gene OTU Shannon H’ taxonomic diversity indices
(https:/qgist.github.com/Imrodriguezr/c74684c275aa3e4db57a78e94c4fb7c0). Using

linear regression to compare each of these metrics, we found that sourmashconsumr

mean slope correlated equally well with 16s rRNA H’ as Nonpareil diversity estimates
(Figure 8). When we instead calculated accumulation curve mean slope with raw
FASTQ files instead of trimmed, we found that RZ estimates did not change for any
comparison, indicating that filtering k-mers with abundance one effectively removed
errors for this use case, removing the need for a trimming step prior to sequencing
coverage estimation. This makes sourmashconsumr’s approach a lightweight
alternative to existing methods, especially when combined with the streaming
capability built into sourmash sketch .
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Mean slope of sourmashconsumr accumulation curves is

comparable to other sequence diversity estimates.

Scatter plots comparing different sequence diversity metrics. 16s
rRNA H’ represents 16s rRNA gene OTU Shannon H’ taxonomic
diversity indices, sourmashconsumer s | o p e ~ \overline{slope}
slope represents mean slope estimates from accumulation curves,
and Nonpareil diversity represents Nonpareil diversity estimates.
Axes labeled with “(2018)” represent data published in Figure 2 of
Rodriguez-R et al., while axes labeled "(calc)” are re-calculated for

this study. Points are colored by the biome from which the
metagenome sample originated. Linear regression R2 values
appear in the upper-left corner of each plot; all values are
significant (p < 0.001).

While lightweight, the downside of this approach is that it produces fewer metrics in
comparison to something like Nonpareil — for example, Nonpareil estimates percent
coverage, diversity, and required sequencing effort to achieve full coverage. The
accumulation curve mean slope estimate is closest to the Nonpareil percent coverage

estimate (Figure 9).
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Mean slope estimates from
sourmashconsumr accumulation curves
are most similar to Nonpareil coverage

estimates.

Scatter plot comparing Nonpareil coverage
estimates against sourmashconsumr mean
slope estimates. See Figure 8 for axis,
legend, and annotation descriptions.

Detecting whether multiple strains of the same
species are present in a single metagenome

Microbial communities are made up of many different organisms. These organisms
can be closely or distantly related. When organisms are different species, it is often
easy to distinguish these sequences as belonging to different genomes because the
sequences are sufficiently different (especially in indicators like tetranucleotide
frequency [27], average read depth [28], and marker gene sequences [29]). However,
when the organisms are different strains of the same species, it is often more difficult
to resolve strain-level genomes, especially in the face of sequencing error and other
noise. Yet, identifying strain-level differences within or between metagenomes can be
important, as individual strains often have phenotypic differences of ecological or
anthropogenic significance [30]. Many computational methods have recently been
suggested to address this problem [31][32]. Taking advantage of metrics that
sourmash gather generates, we developed an approach to detect when multiple
strains of the same species are present in a single metagenome.



The CSV output of sourmash gather reports the genomes in a database that contain
some fraction of the metagenome query. It also reports the fraction of each of those
genomes that overlaps with the metagenome query. Our approach uses the fraction of
each matched genome to detect whether multiple strains of the same species are
likely present in the metagenome. The reason this works is because the sourmash
gather algorithm is a greedy, best-match-first approach that provides the minimum
set of genomes in the reference database needed to contain all of the k-mers in the
metagenome [14] (Figure 10). This means that even if many genomes contain a portion
of the k-mers in the metagenome, only the one genome that contains the largest
fraction of overlap will be returned (Figure 10).
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Conceptual overview of how the greedy algorithm sourmash gather works
and how this impacts the detection of multiple strains for a given species
in a metagenome.

Genomes of the same species represent reference genomes in the database
used torun sourmash gather . Each genome is represented in the database as a
sketch of k-mers. Some k-mers are shared by all genomes of the same species
in the database. Other k-mers are only present in some genomes. sourmash
gather works by first finding the best match between the k-mers in a

metagenome and k-mers in a database.

In the example where only one genome is present (in purple), 0.8 (80%) of the k-
mers overlap with the blue genome so it is returned first. These k-mers are then
subtracted and the search is repeated. The orange genome is the next best
match with 0.2 (20%) of the k-mers overlapping, so it is returned second. The
number next to the box that surrounds the k-mers that matched a given genome
demarcates the order the genome match is reported in. The fraction of the
reference genome found in the metagenome is one of the metrics reported in
the sourmash gather output. If only one strain (genome) of the species is
present in a metagenome, the summed fraction of all of the genomes matched
should not exceed ~1. When multiple strains are present, the greedy algorithm
works the same as illustrated above. This means that the first match found by
sourmash gather may account for k-mers in both strains. However, after



summing the fraction of all matches, if the metagenome was sequenced to
sufficient depth, the summed fraction should exceed ~1.

After this fraction is matched, sourmash gather will search any leftover fraction for
that genome against the database again, and another genome of that species may be
returned as a match for that fraction. This means that as long as genome sizes are
approximately consistent across a species, the fraction of matched genomes for a
given species should sum to approximately 1if there is only one strain present in the
metagenome. When we ran sourmash gather against GenBank on single genomes
that were not in GenBank, the real value we observed for the sum of the fraction of
matched genomes ranged between 0.046 (for genomes that only had ~genus-level
relatives in the database) and 1.04 (for genomes that had many close matches in the
database). Using this information, we empirically selected 1.1 (e.g. 110%) as the
threshold for multiple strains of a single species being present in a metagenome.
Thus, our approach parses the output of sourmash gather and sourmash taxonomy
annotate to determine species that 1) had multiple matched genomes and 2) had a
greater fraction of matched genomes than we expect. The function then plots these
species (Figure 11) and returns a data frame of the species that are hypothesized to
have multiple strains.

To validate this approach, we first applied our method to a synthetic metagenome data
set representing 40 microbial species [33]. The Critical Assessment of Metagenome
Interpretation (CAMI) challenge generated synthetic metagenomes by simulating
reads from a set of source genomes [33]. The “CAMI low” data set mimics lllumina
short-read sequencing with small insert sizes for a community with low diversity.
Twenty-two genomes are from distinct strains while 18 are from strain variants (Table
2). We built a genome and taxonomy database from the CAMI low source genomes
and ran sourmash gather and sourmash taxonomy annotate onthe CAMI low
metagenome. After reading the results into R using the function
read_taxonomy_annotate() , we used the
from_taxonomy_annotate_to_multi_strains() function to detect species for which
there were likely multiple strains. Our method recovered the correct number of strains
for each species in CAMI low without detecting additional species with multiple strains
(Figure 11).



Total

Sum of fraction of

Species source strl:?nas! E:a 2’;:"2 genomes matched
strains within species

Anaeroplasma

bactoclasticum 4 1 3 1.65

Hydrotalea

sandarakina 6 - S 1.71

Paracoccus 3 3 0 1 28

denitrificans '

Unidentified 5 1 4 175

Bacillales species

Table 2

Source genomes used to synthesize the CAMI low metagenome.

“Total source strains” refers to the total number of genomes used to synthesize

the metagenome reads. “Real strains” are genomes that were sequenced from

real organisms while “evolved strains” are computationally mutated from a real

strain. The “sum of fraction of genomes matched within species” is the sum of

the f_match metric output by sourmash gather and summarized by the

from_taxonomy_annotate_to_multistrains() function.
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Figure 11

The from_taxonomy_annotate_to_multi_strains() functionin
sourmashconsumr predicted the correct number of strains for
each species with multiple strains in the synthetic CAMI low
data set.

Each facet depicts a species that had more than one strain. Each
dot on a plot represents one genome match identified by sourmash
gather andthe genome names appear on the y-axis. The dot size
encodes the fraction of the genome that was matched, as do the
dot labels positioned next to each point. The x-axis represents the
average abundance of k-mers for each genome match. Note the x-

axis varies between each facet.

Having demonstrated the ability of this approach to identify species with multiple
strains in a synthetic community, we next tested whether this approach worked with
real metagenomes. We used an infant stool metagenome time series that was
previously demonstrated to have multiple strains of Staphylococcus epidermidis in
nine samples during a sampling course across 11 time points [34]. Our approach
detected strain variation at six of these times (Figure 12), meaning it produced
accurate results for 8 of 11 samples (73%). Using coverage estimates for each S.
epidermidis strain reported in [34], we suspect that insufficient sequencing depth led
to failed detection of multiple strains for the three samples that were missed (Table 3).
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of Staphylococcus epidermidis at six time points in an infant
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sample was collected. All genome accessions (y-axis) represent S.

epidermidis genomes. See Figure 11 for further description of the

plot.
ggymple co?’g;i;; cos‘:;?:;:: . OSJ:_‘:;: cove-lr-:;:: sourmashconsun
Day15 57 26 1 78 | yes
Day 15.5 58 17 4 79 | ves
Day 16 65 18 5 88 | ves
Day 17 e 53 0 53 | no




Sample Strain1 Strain 3 Strain 4 Total

day coverage | coverage | coverage | coverage sourmashconsun
Day 175 6 35 3 a2 | yes

Day 18 18 40 4 62 | ves

Day19 6 23 0 29 | yes

Day 22 7 22 5 34 | no

g§y5 1 46 1 42 | no

Day 23 5 8 3 16 | no

Day 24 0 28 0 28 | no

Table 3. Strain coverage and prediction for S. epidermidis in an infant stool metagenome time series.

Strain labels are inherited from [34]. Normalized coverage estimates from Figure 3 in [34] are accurate within

five units. “sourmashconsumr” refers to whether the from_taxonomy_annotate_to_multistrains() function

predicted the presence of multiple strains while “Accurate” refers to whether the sourmashconsumr prediction was

accurate or not.

In addition to the presence of multiple strains for S. epidermidis, our method detected

multiple strains for Enterococcus faecalis, a species that was not reported to have

strain variation in the original publication [34] (Figure 13).
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Figure 13

Multiple strains of Enterococcus faecalis in all eleven samples

of the time series of an infant stool metagenome.

(A) The sum fraction of all E. faecalis genomes matched exceeded
the empiric threshold of 1.1, indicating that multiple strains of E.
faecalis were likely present throughout the infant stool microbiome

metagenome time course.

(B) E. faecalis genomes matched for the two samples that had the
most observed sum fraction of E. faecalis genomes matched. See

Figure 11 for a description of the plot.

Our approach has limitations tied to the size and quality of the reference database
used during sourmash gather , and to alesser extent, the quality of the taxonomy
used to label the lineage of each genome match. First, this approach can only detect
the presence of multiple strains when there are multiple representative genomes for a
given species in the taxonomy. If there are one or no representatives for that species in
the database, then this approach will always fail to detect multiple strains. Similarly, the
genomes in the reference database must represent the genome in the metagenome,



meaning if the genome in the metagenome contains pangenomic elements that are
not in any genome in the reference database, this approach will not quantify those
fractions of the genome. Given these two limitations, this approach will be most
successful for organisms or environments that are well represented in genome
databases (e.g. GenBank [16], Genome Taxonomy Database [17]) such as the gut
microbiome or Escherichia coli. The quality of the genomes in the reference database
may also impact this method. If genomes in the reference database are contaminated,
this may lead to false inflation of genome match metrics which could skew the results.
Similarly, if the taxonomic lineages group improperly or distribute unrelated or related
lineages, respectively, this could skew the results. Using a database like GTDB that
uses sequence similarity to group genomes into lineages may ameliorate this issue at
the expense of genome recall due to the smaller size of GTDB compared to other
databases like GenBank.

The success of this strategy will also depend on sequencing depth. Because this
approach is tied to coverage of genomes detected in a metagenome, if the
sequencing depth is not sufficient to cover the genomes present in the community,
this method will fail to detect multiple strains even if they are present.

Finally, while sourmashconsumr can detect the presence of multiple strains of a given
species, it does not estimate the number of strains that are present. We attempted to
cluster genomes by average k-mer abundance to estimate the number of strains
present, but realized that average k-mer abundance was likely not sufficient to infer
this information because of the greedy nature of the sourmash gather algorithm. That
is, because the first genome match may combine genomic elements from multiple
strains, the average abundance will not be for genome sequences for one strain, but
for multiple strains. To estimate the number of strains present, it may be possible to
map the metagenome reads against the matched genomes and use an expectation
maximization algorithm such as those used to estimate transcript abundance in RNA-
seq quantification [35]. This remains an area for future research.

Key takeaways

The functions in the sourmashconsumr R package expose the outputs of the
sourmash Python package to analysis and visualization in R. After running sourmash
on sequencing data, the sourmashconsumr package provides default parsing,
analysis, and visualization functions to help interpret these outputs and to leverage



them for additional statistical or machine learning analyses. We hope this package will
help a broader range of researchers to gain insights from their sequencing data.

The sourmashconsumr R package is available at this GitHub repository (DOI:
10.5281/zenodo.7591833) under an MIT license. All code associated with
figures and validation is available in this GitHub repository (DOI:
10.5281/zen0do.7591845).

Next steps

We developed the sourmashconsumr package openly on GitHub following the R

packages guide. We plan to continue to extend functionality in the package as needed.
We also plan to submit the package to CRAN and to build a conda package.

We'd love to hear your feedback. What function are you most excited to use? What

functions do you think are missing or would you like to see?
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