
Published on Feb 21, 2023 by Arcadia Science DOI: 10.57844/arcadia-1896-ke33

A new R package,
sourmashconsumr, for
analyzing and visualizing
the outputs of sourmash

The sourmash Python package produces many outputs that describe

the content and similarity of sequencing data. We developed a new R

package, sourmashconsumr, that lets a wider range of users easily

load, analyze, and visualize those outputs in R.

Contributors (A-Z)

Adair L. Borges, Seemay Chou, Rachel J. Dutton, Megan L. Hochstrasser,

Elizabeth A. McDaniel, Taylor Reiter, Emily C.P. Weiss

Version 5 · Mar 31, 2025

Purpose

Bioinformatics tools are written in many software languages and produce varied

outputs. This is in part because different software languages excel at different tasks —

for example, Python is good at text parsing, while R is good at statistics and

visualization. The variation in the tool space creates barriers to use due to the required

language-specific knowledge.

http://localhost:4321/user/adair-l.-borges
http://localhost:4321/user/seemay-chou
http://localhost:4321/user/rachel-j.-dutton
http://localhost:4321/user/megan-l.-hochstrasser
http://localhost:4321/user/elizabeth-a.-mcdaniel
http://localhost:4321/user/taylor-reiter
http://localhost:4321/user/emily-c.p.-weiss

Why it matters
We often use sequencing data to help answer biological questions and generate new

hypotheses. One of the goals of Arcadia’s software team is to empower biologists to

analyze their own data, and one way to achieve that is by packaging code that

accomplishes routine tasks so that it’s easier for diverse scientists to jump into their

own data.

In this pub, we’re sharing a tool that allows anyone working with sequencing data to

analyze sourmash outputs in R, a language that excels at statistical analysis and

visualization. We thought it would be especially helpful to include a standard set of go-

to visualizations that we wouldn’t need to build from scratch every time we analyze a

new dataset. With this package, we anticipate that scientists with a wider range of

computational literacy will be able to directly play with their data, giving them more

ownership and creativity.

Sourmash is a Python package that facilitates quick insights into sequencing data

through rapid comparisons. To take advantage of visualization and statistical analysis

tools, it is often helpful to analyze the outputs of this tool in R. We built

sourmashconsumr to make this easier in our own work and for others comparing large

amounts of sequencing data, doing metagenomics, or doing other sequencing quality

control. This package provides a series of parsing functions to bring the sourmash

output files into R and features visualization and analysis functions commonly used to

interpret sequencing data.

This pub is part of the project, “Useful computing at Arcadia.” Visit the project

narrative for more background and context.

The sourmashconsumr R package is available in this GitHub repository.

Documentation for the package is available here.

All code associated with figures and validation is available in this GitHub

repository.

https://research.arcadiascience.com/useful-computing
https://research.arcadiascience.com/useful-computing
https://github.com/Arcadia-Science/sourmashconsumr/tree/v0.1.0
https://arcadia-science.github.io/sourmashconsumr/
https://github.com/Arcadia-Science/2022-sourmashconsumr-validation/tree/v1.0
https://github.com/Arcadia-Science/2022-sourmashconsumr-validation/tree/v1.0

The problem

Some biological computing tools, statistical methods, or visualizations are only

available as R packages [1][2][3]. To access these methods, we need to load and

parse biological data into the appropriate, often tool-specific, format.

Sourmash is a Python package that quickly compares potentially very large sets of

DNA and protein sequences [4]. This functionality can be used to, for example, cluster

transcriptomes [5] or genomes [6], to identify the taxonomy of new isolate or

metagenome-assembled genomes [7], or to determine the taxonomic composition of

a new metagenome sequence by comparing it against a database of reference

genomes [8]. Sourmash outputs text files in JSON and CSV format that contain

information about the sequences themselves or about the similarity between a

sequence and other sequences. These text files can be used for many downstream

applications, including visualization of pairwise sample similarity [5] or taxonomic

composition [8], machine learning [9], differential abundance analysis [10], or to

estimate pangenomes [11].

The process of transforming the output of a sourmash command into a downstream

analysis requires a substantial amount of code, much of which can be standardized

between use cases (e.g., parsing). The sourmash Python API provides this functionality

in the Python language, thereby lowering the bar for analysis of these outputs in

Python. We sought a similar code base that would let us analyze sourmash outputs in

R.

Our solution

We wrote an R package, sourmashconsumr, which provides parsing, visualization, and

analysis functions to operate on the outputs of the sourmash Python package in R.

The resource
Below, we describe the main functionalities encoded in the sourmashconsumr R

package (Figure 1). In addition to this overview, the package itself contains function

documentation and a vignette that demonstrates how to use the code.

https://arcadia-science.github.io/sourmashconsumr/reference/index.html
https://arcadia-science.github.io/sourmashconsumr/reference/index.html
https://arcadia-science.github.io/sourmashconsumr/articles/sourmashconsumr.html

The sourmashconsumr R package is available at this GitHub repository (DOI:

10.5281/zenodo.7591833) under an MIT license. All code associated with

figures and validation is available in this GitHub repository (DOI:

10.5281/zenodo.7591845).

Overview of functionality encoded by the sourmashconsumr R

package.

The sourmashconsumr R package operates on text files output by

specific commands in the sourmash Python package (y-axis). It

works with the output of sourmash sketch (JSON), compare (CSV),

gather (CSV), and taxonomy annotate (CSV). At a high level, the

functions in the sourmashconsumr package either read and parse,

plot, analyze, or convert the outputs of these commands. The x-axis

summarizes the functionality encoded by the sourmashconsumr

package, and the check marks designate which sourmash output

files the functionality applies to.

Figure 1

https://github.com/Arcadia-Science/sourmashconsumr/tree/v0.1.0
https://doi.org/10.5281/zenodo.7591833
https://doi.org/10.5281/zenodo.7591833
https://github.com/Arcadia-Science/2022-sourmashconsumr-validation/tree/v1.0
https://doi.org/10.5281/zenodo.7591845
https://doi.org/10.5281/zenodo.7591845

Reading sourmash outputs into R

The sourmashconsumr package provides parsing functions to read the output of

sourmash sketch , compare , gather , and taxonomy annotate into R as tidy data

frames. These function names begin with read* . Each function takes the path to one

or many files or URLs and returns a single data frame. These data frames can then be

used to further analyze or visualize the input data using other code or R packages.

Visualizing the outputs of sourmash

The majority of functions in the sourmashconsumr package implement common

visualizations for each of the four output types that the read* functions parse. These

function names begin with plot* . When possible, we encode visualizations as

ggplot2 objects so that the user can add additional layers to control the plot aesthetics

[12].

Below, we show some of the outputs of these functions using the datasets built into

sourmashconsumr: six stool microbiome shotgun metagenome samples from the

Integrated Human Microbiome Project Inflammatory Bowel Disease cohort [13], a

longitudinal survey of the emergence of inflammatory bowel disease (IBD). The

samples in the example data are all starting samples taken from different individuals

(Table 1). All individuals were symptomatic at this initial time point, but three individuals

were diagnosed with Crohn’s disease (CD), a type of IBD, by the end of the year, and

three individuals were not (Non-IBD).

SRA accession number Group

SRR5936131 CD

SRR5947006 CD

SRR5935765 CD

SRR5936197 Non-IBD

SRR5946923 Non-IBD

SRR5946920 Non-IBD

Example dataset distributed with the sourmashconsumr package.

Signatures

Sourmash signatures contain one or multiple sub-sampled representations of DNA or

protein sequences (FracMinHash sketches) [14][15]. Each FracMinHash sketch

contains hashes (and optionally, hash abundances) that represent a subset of k-mers

from the original sequences. The sourmash sketch command consistently

subsamples k-mers across different sequences, so we can compare (e.g., intersect)

sketches to understand sequence similarity. While the command line function

sourmash compare estimates similarity and containment metrics, sourmashconsumr

introduces upset plots that operate directly on sets of signatures read into R with the

read_signature() function (Figure 2). These plots operate directly on the hashes in

the FracMinHash sketch (e.g., subsampled k-mers) and so can help build intuition for

the amount of sequence shared between sets of samples. Upset plots can work on

any signatures but are most meaningful when applied to sketches built with the same

k-mer size and scaled value. In addition to upset plots built from signatures that

represent single sequencing libraries, the sourmash command line function sourmash

sig combine can combine signatures (e.g., from the same group; cases vs. controls)

prior to reading and plotting the signatures with sourmashconsumr [9].

Table 1

An upset plot built from sourmash

signatures representing stool microbiome

shotgun metagenomes.

Upset plots are alternatives to venn diagrams

that show the intersection size between

different groups of samples. In the above plot,

we see that the majority of k-mers present in

any metagenome are distinct to that

metagenome. Groups with fewer than 10

shared k-mers are not displayed.

Compare

sourmash compare estimates pairwise similarity or containment between many

signatures. The sourmashconsumr package provides functions to plot the CSV output

as a clustered heatmap (Figure 3, A) or to process the CSV via multidimensional

scaling (MDS) and produce a plot (Figure 3, B).

Figure 2

Visualizations that sourmashconsumr produced from the

output of sourmash compare .

(A) Clustered heatmap representing sample similarity. Lighter colors

represent higher similarity with the diagonal axis representing one

(100% similar).

(B) Multidimensional scaling plot where points that are more similar

are grouped more closely together. The groups refer to stool

microbiome metagenome samples of individuals with (“CD”) and

without (“Non-IBD”) Crohn’s disease.

Gather

Sourmash gather compares a query signature against a database of reference

signatures and outputs the minimum set of reference matches that contain all of the k-

mers in the original query signature [14]. Sourmash gather is most frequently applied

to metagenome profiling where a query metagenome is compared against a database

of reference genomes (e.g., GenBank [16], Genome Taxonomy Database [17]) to

determine which genomes are in the metagenome (see Figure 10 for an additional

explanation of the gather algorithm). Recent studies demonstrated that sourmash

gather provides accurate taxonomic profiles for metagenomes sequenced with both

long and short reads [14][18]. In sourmashconsumr, the first visualization for the output

of sourmash gather details the fraction of a sample that is classifiable versus

Figure 3

unclassifiable (Figure 4, A). Because we can use multiple databases in one run of

sourmash gather , we can color the plot based on the database from which the match

originated. The second visualization is an upset plot that depicts the intersection of

reference genomes identified in each sample (Figure 4, B).

Visualizations that sourmashconsumr produced from the

output of sourmash gather .

(A) A bar plot summarizing the fraction of each metagenome

sample that is classifiable against the GTDB representative

database (“GTDB rs207 reps'').

(B) An upset plot depicting the genome matches shared by different

sets of samples. Groups with fewer than 10 shared genome

matches are not displayed. See Figure 2 for an explanation of

upset plots.

Taxonomy annotate

sourmash taxonomy annotate adds taxonomic lineages to genome matches that

sourmash gather produces. This allows us to summarize genome matches up to

higher levels of taxonomy than genome or strain. Taking advantage of this, all

sourmashconsumr plots that visualize the output of sourmash taxonomy annotate

allow optional taxonomy agglomeration to any level of taxonomy (domain, phylum,

class, order, family, genus, species, and when provided by the taxonomy, strain). The

Figure 4

first visualization in sourmashconsumr for the output of sourmash taxonomy annotate

is a Sankey diagram, which can be applied to one or many samples (Figure 5, A).

Sankey diagrams depict the flow from one set of values to another and, when applied

to taxonomic profiles of metagenomes, show the taxonomic composition at

increasingly finite resolution. The second visualization is an upset plot that depicts the

presence of taxonomic lineages across samples (Figure 5, B). Since upset plots are

based on the presence or absence of lineages, the counts in the upset barplot do not

reflect the abundances of lineages observed at a given taxonomic level, but rather how

many lineages are shared between samples at that level. The last visualization is an

alluvial plot for time series samples that shows how relative abundances of taxonomic

lineages shift over time (Figure 5, C).

Visualizations sourmashconsumr produced from the output of

sourmash taxonomy annotate .

(A) A Sankey diagram produced from one stool microbiome

metagenome from an individual with Crohn’s disease, SRR5935765.

We performed taxonomic agglomeration at the order level. While

colors help draw attention to delineations between arms of the

diagram, they do not encode information.

(B) An upset plot depicting the shared taxonomic lineages between

different sets of stool microbiome metagenome samples of

individuals with and without Crohn’s disease. We performed

Figure 5

taxonomic agglomeration at the order level and colored the plot by

the phylum of the shared lineages. See Figure 2 for an explanation

of upset plots.

(C) A time series alluvial plot depicting the change in taxonomic

lineages over time in a time course of infant stool microbiome

metagenomes (see the “New functionality” section below for a

description of the dataset). We performed taxonomic

agglomeration at the genus level. Each ribbon represents the

fraction of the metagenome attributable to that taxonomic lineage

at a given time. Lineages are labeled by name on the plot and by fill

color. Only lineages that comprised at least 0.15 of the sample at a

given time are labeled. Lineages that are low-abundance

throughout the entire time course are grouped into “Other.”

Converting sourmash outputs into objects

compatible with other R libraries

Many popular biological computing R packages require data to be in a specific format

to enable the functions in those packages to work upon the data. Sourmashconsumr

provides parsing functions to transform the output of sourmash taxonomy annotate

into phyloseq [2] and metacoder [3] objects. After conversion to these formats, users

can use the functions in those packages on sourmash results (Figure 6).

sourmashconsumr provides functions to convert the output of

sourmash taxonomy annotate into other package ecosystems

in R.

Metacoder heat tree plot representing the order-level taxonomic

lineages present in six stool microbiome metagenomes from

individuals with (n = 3) and without (n = 3) Crohn’s disease. The

nodes are labeled with taxonomic lineage assigned with sourmash

gather and sourmash taxonomy annotate by comparing the

metagenome samples against the Genome Taxonomy Database.

Node size reflects the k-mer abundance of each lineage across all

samples. Node colors represent log2 ratio for median proportions

when comparing order-level k-mer abundance between individuals

with and without Crohn’s disease as calculated by the metacoder

function compare_groups() . Green nodes are more abundant in

individuals with Crohn’s disease.

Both phyloseq and metacoder objects contain abundance information about

taxonomic lineages in the data they represent. To derive this information,

sourmashconsumr calculates the abundance-weighted number of matched hashes

(subsampled k-mers) for each genome match returned by sourmash gather . It uses

the metrics unique_intersect_bp , scaled , and average_abund output by sourmash

gather to infer this using the equation:

Figure 6

unique_intersect_bp is the estimated number of base pairs that would overlap

between the query and the genome match. It accounts for gather’s greedy best-

match-first algorithm and only counts overlaps once (e.g., once a sequence is

matched between a query and a genome, the sequence is removed from subsequent

rounds of matching; see Figure 10). Dividing this value by the scaled value results in

the number of distinct k-mers that overlap between the query and the genome match.

In the sourmash package, the scaled value controls the fraction of k-mers that are

represented in the FracMinHash sketch [14]. The most common scaled value is 1000,

so approximately 1/1000th of the k-mers in the original sequence become represented

in the sketch. Lastly, sourmashconsumr multiplies this number by the average

abundance of k-mers observed for a given genome match.

Representing abundances for genomes and lineages this way ensures that only k-

mers that sourmash actually counted are represented in the final object, and that

these estimates are not falsely inflated, which can impact downstream statistical

results. One side effect of this is that phyloseq and metacoder objects will be most

meaningful when they are built with samples analyzed with the same scaled value.

New functionality

The sourmash outputs are information-rich and can be used for downstream analyses

like machine learning [9] or differential abundance analysis [10]. Taking advantage of

these information sources, we implemented two new functions that work on the

outputs of sourmash sketch and sourmash taxonomy annotate , to derive new

insights from sequencing data. The first uses sourmash signatures to estimate

sequencing saturation of a run and the second uses the output of sourmash gather

and sourmash taxonomy annotate to detect whether multiple strains of the same

species are present in a metagenome or other sequencing sample.

Estimating sequencing saturation using k-mers and

accumulation curves

Sample complexity, sequencing strategy (e.g., RNA-seq, whole-genome sequencing),

and sequencing depth determine whether a sequencing dataset captures all of the

(unique_intersect_bp/scaled) ∗ average_abund

sequences contained in the original sample. It’s difficult to determine the appropriate

depth at which to sequence a sample without a priori knowledge of the sample

complexity (e.g., genome size, number of transcripts expressed, microbial community

diversity), but sample coverage can impact biological insights [19]. While it is often

impossible to increase sequencing depth of a sample after initial sequencing efforts,

measuring sequencing saturation after the fact highlights whether the sequencing run

has captured the full diversity of the sample.

A variety of methods assess sequencing coverage [20][21][22]. We implemented an

approach in sourmashconsumr that builds an accumulation curve (rarefaction curve)

from abundance-weighted sketches and that uses the mean slope of the

accumulation curve to estimate sequencing saturation (Figure 7). Using signatures

built from raw or trimmed FASTQ reads, the function

from_signatures_to_rarefaction_df() wraps the vegan rarecurve() function to

produce a data frame that represents k-mer accumulation as a function of data seen

[23]. Before building the data frame, we remove k-mers that only occur once in a

sample, as these likely represent sequencing errors (when we build sketches from long

k-mers, the majority of k-mers in a sketch will be from erroneous sequences given that

one sequencing error produces k erroneous k-mers [24]). However, filtering out k-mers

that only occur once per sample means that traditional methods to assess

accumulation curve saturation that rely on k-mers that occur once or twice in a dataset

can’t be applied in this scenario [25]. To overcome this, we estimate sequencing

saturation by calculating the mean slope of the accumulation curve — samples with

higher mean slopes have a lower saturation as the accumulation curve doesn’t

approach its asymptote. Two of the CD samples are sequenced more deeply than the

Non-IBD samples (Figure 7).

Accumulation curves produced from

sourmash signatures.

Each curve represents one of six stool

microbiome metagenomes from individuals

with (CD, n = 3) and without (Non-IBD, n = 3)

Crohn’s disease. Curves are labeled by their

estimated mean slope. Curves that saturate

and have a lower mean slope represent

samples that have higher coverage. Mean

slopes are reported as labels at the end of

each curve.

To assess the accuracy of this method, we compared this approach against Nonpareil,

a software tool that estimates metagenome coverage and sequencing diversity [21].

Using a subset of samples shown in Figure 2 of the 2018 Nonpareil publication [21], we

compared the sourmashconsumr mean slope of the accumulation curve against the

Nonpareil diversity estimate. We removed samples sequenced with single-end runs,

samples with multiple SRA run accessions, and run accessions for which data was no

longer available, leaving a total of 70 samples from six biomes (Figure 8). Following the

Nonpareil recommendations, we first trimmed the metagenome FASTQ files using

fastp (-q 20 , --length_required 24) [26] before applying Nonpareil (-T kmer) to

produce diversity estimates and sourmash and sourmashconsumr to produce

accumulation curves and mean slope estimates. We also obtained the data underlying

Figure 2 in the Nonpareil publication, which contained Nonpareil diversity estimates

Figure 7

and 16s rRNA gene OTU Shannon H’ taxonomic diversity indices

(https://gist.github.com/lmrodriguezr/c74684c275aa3e4db57a78e94c4fb7c0). Using

linear regression to compare each of these metrics, we found that sourmashconsumr

mean slope correlated equally well with 16s rRNA H’ as Nonpareil diversity estimates

(Figure 8). When we instead calculated accumulation curve mean slope with raw

FASTQ files instead of trimmed, we found that R estimates did not change for any

comparison, indicating that filtering k-mers with abundance one effectively removed

errors for this use case, removing the need for a trimming step prior to sequencing

coverage estimation. This makes sourmashconsumr’s approach a lightweight

alternative to existing methods, especially when combined with the streaming

capability built into sourmash sketch .

2

https://gist.github.com/lmrodriguezr/c74684c275aa3e4db57a78e94c4fb7c0

Mean slope of sourmashconsumr accumulation curves is

comparable to other sequence diversity estimates.

Scatter plots comparing different sequence diversity metrics. 16s

rRNA H’ represents 16s rRNA gene OTU Shannon H’ taxonomic

diversity indices, sourmashconsumer s l o p e ‾ \overline{slope}

slope​ represents mean slope estimates from accumulation curves,

and Nonpareil diversity represents Nonpareil diversity estimates.

Axes labeled with “(2018)” represent data published in Figure 2 of

Rodriguez-R et al., while axes labeled ”(calc)” are re-calculated for

this study. Points are colored by the biome from which the

metagenome sample originated. Linear regression R values

appear in the upper-left corner of each plot; all values are

significant (p < 0.001).

While lightweight, the downside of this approach is that it produces fewer metrics in

comparison to something like Nonpareil — for example, Nonpareil estimates percent

coverage, diversity, and required sequencing effort to achieve full coverage. The

accumulation curve mean slope estimate is closest to the Nonpareil percent coverage

estimate (Figure 9).

Figure 8

2

https://doi.org/10.1128/mSystems.00039-18

Mean slope estimates from

sourmashconsumr accumulation curves

are most similar to Nonpareil coverage

estimates.

Scatter plot comparing Nonpareil coverage

estimates against sourmashconsumr mean

slope estimates. See Figure 8 for axis,

legend, and annotation descriptions.

Detecting whether multiple strains of the same

species are present in a single metagenome

Microbial communities are made up of many different organisms. These organisms

can be closely or distantly related. When organisms are different species, it is often

easy to distinguish these sequences as belonging to different genomes because the

sequences are sufficiently different (especially in indicators like tetranucleotide

frequency [27], average read depth [28], and marker gene sequences [29]). However,

when the organisms are different strains of the same species, it is often more difficult

to resolve strain-level genomes, especially in the face of sequencing error and other

noise. Yet, identifying strain-level differences within or between metagenomes can be

important, as individual strains often have phenotypic differences of ecological or

anthropogenic significance [30]. Many computational methods have recently been

suggested to address this problem [31][32]. Taking advantage of metrics that

sourmash gather generates, we developed an approach to detect when multiple

strains of the same species are present in a single metagenome.

Figure 9

The CSV output of sourmash gather reports the genomes in a database that contain

some fraction of the metagenome query. It also reports the fraction of each of those

genomes that overlaps with the metagenome query. Our approach uses the fraction of

each matched genome to detect whether multiple strains of the same species are

likely present in the metagenome. The reason this works is because the sourmash

gather algorithm is a greedy, best-match-first approach that provides the minimum

set of genomes in the reference database needed to contain all of the k-mers in the

metagenome [14] (Figure 10). This means that even if many genomes contain a portion

of the k-mers in the metagenome, only the one genome that contains the largest

fraction of overlap will be returned (Figure 10).

Conceptual overview of how the greedy algorithm sourmash gather works

and how this impacts the detection of multiple strains for a given species

in a metagenome.

Genomes of the same species represent reference genomes in the database

used to run sourmash gather . Each genome is represented in the database as a

sketch of k-mers. Some k-mers are shared by all genomes of the same species

in the database. Other k-mers are only present in some genomes. sourmash

gather works by first finding the best match between the k-mers in a

metagenome and k-mers in a database.

In the example where only one genome is present (in purple), 0.8 (80%) of the k-

mers overlap with the blue genome so it is returned first. These k-mers are then

subtracted and the search is repeated. The orange genome is the next best

match with 0.2 (20%) of the k-mers overlapping, so it is returned second. The

number next to the box that surrounds the k-mers that matched a given genome

demarcates the order the genome match is reported in. The fraction of the

reference genome found in the metagenome is one of the metrics reported in

the sourmash gather output. If only one strain (genome) of the species is

present in a metagenome, the summed fraction of all of the genomes matched

should not exceed ~1. When multiple strains are present, the greedy algorithm

works the same as illustrated above. This means that the first match found by

sourmash gather may account for k-mers in both strains. However, after

Figure 10

summing the fraction of all matches, if the metagenome was sequenced to

sufficient depth, the summed fraction should exceed ~1.

After this fraction is matched, sourmash gather will search any leftover fraction for

that genome against the database again, and another genome of that species may be

returned as a match for that fraction. This means that as long as genome sizes are

approximately consistent across a species, the fraction of matched genomes for a

given species should sum to approximately 1 if there is only one strain present in the

metagenome. When we ran sourmash gather against GenBank on single genomes

that were not in GenBank, the real value we observed for the sum of the fraction of

matched genomes ranged between 0.046 (for genomes that only had ~genus-level

relatives in the database) and 1.04 (for genomes that had many close matches in the

database). Using this information, we empirically selected 1.1 (e.g., 110%) as the

threshold for multiple strains of a single species being present in a metagenome.

Thus, our approach parses the output of sourmash gather and sourmash taxonomy

annotate to determine species that 1) had multiple matched genomes and 2) had a

greater fraction of matched genomes than we expect. The function then plots these

species (Figure 11) and returns a data frame of the species that are hypothesized to

have multiple strains.

To validate this approach, we first applied our method to a synthetic metagenome

dataset representing 40 microbial species [33]. The Critical Assessment of

Metagenome Interpretation (CAMI) challenge generated synthetic metagenomes by

simulating reads from a set of source genomes [33]. The “CAMI low” dataset mimics

Illumina short-read sequencing with small insert sizes for a community with low

diversity. Twenty-two genomes are from distinct strains while 18 are from strain variants

(Table 2). We built a genome and taxonomy database from the CAMI low source

genomes and ran sourmash gather and sourmash taxonomy annotate on the CAMI

low metagenome. After reading the results into R using the function

read_taxonomy_annotate() , we used the

from_taxonomy_annotate_to_multi_strains() function to detect species for which

there were likely multiple strains. Our method recovered the correct number of strains

for each species in CAMI low without detecting additional species with multiple strains

(Figure 11).

Species

Total

source

strains

Real

strains

Evolved

strains

Sum of fraction of

genomes matched

within species

Anaeroplasma

bactoclasticum
4 1 3 1.65

Hydrotalea

sandarakina 6 1 5 1.71

Paracoccus

denitrificans
3 3 0 1.28

Unidentified

Bacillales species
5 1 4 1.75

Source genomes used to synthesize the CAMI low metagenome.

“Total source strains” refers to the total number of genomes used to synthesize

the metagenome reads. “Real strains” are genomes that were sequenced from

real organisms while “evolved strains” are computationally mutated from a real

strain. The “sum of fraction of genomes matched within species” is the sum of

the f_match metric output by sourmash gather and summarized by the

from_taxonomy_annotate_to_multistrains() function.

Table 2

The from_taxonomy_annotate_to_multi_strains() function in

sourmashconsumr predicted the correct number of strains for

each species with multiple strains in the synthetic CAMI low

dataset.

Each facet depicts a species that had more than one strain. Each

dot on a plot represents one genome match identified by sourmash

gather and the genome names appear on the y-axis. The dot size

encodes the fraction of the genome that was matched, as do the

dot labels positioned next to each point. The x-axis represents the

average abundance of k-mers for each genome match. Note the x-

axis varies between each facet.

Having demonstrated the ability of this approach to identify species with multiple

strains in a synthetic community, we next tested whether this approach worked with

real metagenomes. We used an infant stool metagenome time series that was

previously demonstrated to have multiple strains of Staphylococcus epidermidis in

nine samples during a sampling course across 11 time points [34]. Our approach

detected strain variation at six of these times (Figure 12), meaning it produced

accurate results for 8 of 11 samples (73%). Using coverage estimates for each S.

epidermidis strain reported in [34], we suspect that insufficient sequencing depth led

to failed detection of multiple strains for the three samples that were missed (Table 3).

Figure 11

sourmashconsumr predicted the presence of multiple strains

of Staphylococcus epidermidis at six time points in an infant

stool metagenome time series.

Each facet depicts a metagenome and is labeled by the day the

sample was collected. All genome accessions (y-axis) represent S.

epidermidis genomes. See Figure 11 for further description of the

plot.

Figure 12

Sample

day

Strain 1

coverage

Strain 3

coverage

Strain 4

coverage

Total

coverage
sourmashconsum

Day 15 57 20 1 78 yes

Day 15.5 58 17 4 79 yes

Day 16 65 18 5 88 yes

Day 17 0 53 0 53 no

Day 17.5 6 35 3 44 yes

Day 18 18 40 4 62 yes

Day 19 6 23 0 29 yes

Day 22 7 22 5 34 no

Day

22.5
1 40 1 42 no

Day 23 5 8 3 16 no

Day 24 0 28 0 28 no

Strain coverage and prediction for S. epidermidis in an infant stool

metagenome time series.

Strain labels are inherited from [34]. Normalized coverage estimates from Figure

3 in [34] are accurate within five units. “sourmashconsumr” refers to whether the

from_taxonomy_annotate_to_multistrains() function predicted the presence

of multiple strains while “Accurate” refers to whether the sourmashconsumr

prediction was accurate or not.

In addition to the presence of multiple strains for S. epidermidis, our method detected

multiple strains for Enterococcus faecalis, a species that wasn’t reported to have strain

variation in the original publication [34] (Figure 13).

Table 3

Multiple strains of Enterococcus faecalis in all eleven samples

of the time series of an infant stool metagenome.

(A) The sum fraction of all E. faecalis genomes matched exceeded

the empiric threshold of 1.1, indicating that multiple strains of E.

faecalis were likely present throughout the infant stool microbiome

metagenome time course.

(B) E. faecalis genomes matched for the two samples that had the

most observed sum fraction of E. faecalis genomes matched. See

Figure 11 for a description of the plot.

Our approach has limitations tied to the size and quality of the reference database

used during sourmash gather , and to a lesser extent, the quality of the taxonomy

used to label the lineage of each genome match. First, this approach can only detect

the presence of multiple strains when there are multiple representative genomes for a

given species in the taxonomy. If there are one or no representatives for that species in

the database, then this approach will always fail to detect multiple strains. Similarly, the

genomes in the reference database must represent the genome in the metagenome,

Figure 13

meaning if the genome in the metagenome contains pangenomic elements that aren’t

in any genome in the reference database, this approach won’t quantify those fractions

of the genome. Given these two limitations, this approach will be most successful for

organisms or environments that are well represented in genome databases (e.g.,

GenBank [16], Genome Taxonomy Database [17]) such as the gut microbiome or

Escherichia coli. The quality of the genomes in the reference database may also

impact this method. If genomes in the reference database are contaminated, this may

lead to false inflation of genome match metrics which could skew the results. Similarly,

if the taxonomic lineages group improperly or distribute unrelated or related lineages,

respectively, this could skew the results. Using a database like GTDB that uses

sequence similarity to group genomes into lineages may ameliorate this issue at the

expense of genome recall due to the smaller size of GTDB compared to other

databases like GenBank.

The success of this strategy will also depend on sequencing depth. Because this

approach is tied to coverage of genomes detected in a metagenome, if the

sequencing depth is not sufficient to cover the genomes present in the community,

this method will fail to detect multiple strains even if they are present.

Finally, while sourmashconsumr can detect the presence of multiple strains of a given

species, it does not estimate the number of strains that are present. We attempted to

cluster genomes by average k-mer abundance to estimate the number of strains

present, but realized that average k-mer abundance was likely not sufficient to infer

this information because of the greedy nature of the sourmash gather algorithm. That

is, because the first genome match may combine genomic elements from multiple

strains, the average abundance will not be for genome sequences for one strain, but

for multiple strains. To estimate the number of strains present, it may be possible to

map the metagenome reads against the matched genomes and use an expectation

maximization algorithm such as those used to estimate transcript abundance in RNA-

seq quantification [35]. This remains an area for future research.

Key takeaways
The functions in the sourmashconsumr R package expose the outputs of the

sourmash Python package to analysis and visualization in R. After running sourmash

on sequencing data, the sourmashconsumr package provides default parsing,

analysis, and visualization functions to help interpret these outputs and to leverage

them for additional statistical or machine learning analyses. We hope this package will

help a broader range of researchers to gain insights from their sequencing data.

The sourmashconsumr R package is available at this GitHub repository (DOI:

10.5281/zenodo.7591833) under an MIT license. All code associated with

figures and validation is available in this GitHub repository (DOI:

10.5281/zenodo.7591845).

Next steps
We developed the sourmashconsumr package openly on GitHub following the R

packages guide. We plan to continue to extend functionality in the package as needed.

We also plan to submit the package to CRAN and to build a conda package.

We’d love to hear your feedback. What function are you most excited to use? What

functions do you think are missing or would you like to see?

References
Martin BD, Witten D, Willis AD. (2020). Modeling microbial abundances and

dysbiosis with beta-binomial regression. https://doi.org/10.1214/19-aoas1283

McMurdie PJ, Holmes S. (2013). phyloseq: An R Package for Reproducible

Interactive Analysis and Graphics of Microbiome Census Data.

https://doi.org/10.1371/journal.pone.0061217

Foster ZSL, Sharpton TJ, Grünwald NJ. (2017). Metacoder: An R package for

visualization and manipulation of community taxonomic diversity data.

https://doi.org/10.1371/journal.pcbi.1005404

Titus Brown C, Irber L. (2016). sourmash: a library for MinHash sketching of DNA.

https://doi.org/10.21105/joss.00027

1

2

3

4

https://github.com/Arcadia-Science/sourmashconsumr/tree/v0.1.0
https://doi.org/10.5281/zenodo.7591833
https://doi.org/10.5281/zenodo.7591833
https://github.com/Arcadia-Science/2022-sourmashconsumr-validation/tree/v1.0
https://doi.org/10.5281/zenodo.7591845
https://doi.org/10.5281/zenodo.7591845
https://github.com/Arcadia-Science/sourmashconsumr/tree/v0.1.0
https://r-pkgs.org/
https://r-pkgs.org/
https://doi.org/10.1214/19-aoas1283
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pcbi.1005404
https://doi.org/10.21105/joss.00027

Gingrich AA, Reiter TE, Judge SJ, York D, Yanagisawa M, Razmara A, Sturgill I,

Basmaci UN, Brady RV, Stoffel K, Murphy WJ, Rebhun RB, Brown CT, Canter RJ.

(2021). Comparative Immunogenomics of Canine Natural Killer Cells as

Immunotherapy Target. https://doi.org/10.3389/fimmu.2021.670309

Tian L, Mazloom R, Heath LS, Vinatzer BA. (2021). LINflow: a computational

pipeline that combines an alignment-free with an alignment-based method to

accelerate generation of similarity matrices for prokaryotic genomes.

https://doi.org/10.7717/peerj.10906

Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. (2019).

Compendium of 4,941 rumen metagenome-assembled genomes for rumen

microbiome biology and enzyme discovery. https://doi.org/10.1038/s41587-019-

0202-3

Patin NV, Goodwin KD. (2022). Long-Read Sequencing Improves Recovery of

Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine

Metagenomes. https://doi.org/10.1128/msystems.00595-22

Reiter TE, Irber L, Gingrich AA, Haynes D, Pierce-Ward NT, Brooks PT, Mizutani Y,

Moritz D, Reidl F, Willis AD, Sullivan BD, Brown CT. (2022). Meta-analysis of

metagenomes via machine learning and assembly graphs reveals strain switches

in Crohn’s disease. https://doi.org/10.1101/2022.06.30.498290

West KA, Yin X, Rutherford EM, Wee B, Choi J, Chrisman BS, Dunlap KL, Hannibal

RL, Hartono W, Lin M, Raack E, Sabino K, Wu Y, Wall DP, David MM, Dabbagh K,

DeSantis TZ, Iwai S. (2022). Multi-angle meta-analysis of the gut microbiome in

Autism Spectrum Disorder: a step toward understanding patient subgroups.

https://doi.org/10.1038/s41598-022-21327-9

Reiter TE, Pierce-Ward NT, Irber L, Botvinnik OB, Brown CT. (2022). Protein k-

mers enable assembly-free microbial metapangenomics.

https://doi.org/10.1101/2022.06.27.497795

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G,

Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K,

Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K,

Yutani H. (2019). Welcome to the Tidyverse. https://doi.org/10.21105/joss.01686

Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon

TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, Casero D, Courtney H,

Gonzalez A, Graeber TG, Hall AB, Lake K, Landers CJ, Mallick H, Plichta DR,

Prasad M, Rahnavard G, Sauk J, Shungin D, Vázquez-Baeza Y, White RA III, Bishai

J, Bullock K, Deik A, Dennis C, Kaplan JL, Khalili H, McIver LJ, Moran CJ, Nguyen

L, Pierce KA, Schwager R, Sirota-Madi A, Stevens BW, Tan W, ten Hoeve JJ,

5

6

7

8

9

10

11

12

13

https://doi.org/10.3389/fimmu.2021.670309
https://doi.org/10.7717/peerj.10906
https://doi.org/10.1038/s41587-019-0202-3
https://doi.org/10.1038/s41587-019-0202-3
https://doi.org/10.1128/msystems.00595-22
https://doi.org/10.1101/2022.06.30.498290
https://doi.org/10.1038/s41598-022-21327-9
https://doi.org/10.1101/2022.06.27.497795
https://doi.org/10.21105/joss.01686

Weingart G, Wilson RG, Yajnik V, Braun J, Denson LA, Jansson JK, Knight R,

Kugathasan S, McGovern DPB, Petrosino JF, Stappenbeck TS, Winter HS, Clish

CB, Franzosa EA, Vlamakis H, Xavier RJ, Huttenhower C. (2019). Multi-omics of

the gut microbial ecosystem in inflammatory bowel diseases.

https://doi.org/10.1038/s41586-019-1237-9

Irber L, Brooks PT, Reiter T, Pierce-Ward NT, Hera MR, Koslicki D, Brown CT.

(2022). Lightweight compositional analysis of metagenomes with FracMinHash

and minimum metagenome covers. https://doi.org/10.1101/2022.01.11.475838

Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. (2019). Large-scale sequence

comparisons with sourmash. https://doi.org/10.12688/f1000research.19675.1

Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Sherry ST, Yankie L, Karsch-Mizrachi

I. (2022). GenBank 2023 update. https://doi.org/10.1093/nar/gkac1012

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P.

(2021). GTDB: an ongoing census of bacterial and archaeal diversity through a

phylogenetically consistent, rank normalized and complete genome-based

taxonomy. https://doi.org/10.1093/nar/gkab776

Portik DM, Brown CT, Pierce-Ward NT. (2022). Evaluation of taxonomic

classification and profiling methods for long-read shotgun metagenomic

sequencing datasets. https://doi.org/10.1186/s12859-022-05103-0

Merrill BD, Carter MM, Olm MR, Dahan D, Tripathi S, Spencer SP, Yu B, Jain S,

Neff N, Jha AR, Sonnenburg ED, Sonnenburg JL. (2022). Ultra-deep Sequencing

of Hadza Hunter-Gatherers Recovers Vanishing Gut Microbes.

https://doi.org/10.1101/2022.03.30.486478

Rodriguez-R LM, Konstantinidis KT. (2013). Nonpareil: a redundancy-based

approach to assess the level of coverage in metagenomic datasets.

https://doi.org/10.1093/bioinformatics/btt584

Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. (2018).

Nonpareil 3: Fast Estimation of Metagenomic Coverage and Sequence Diversity.

https://doi.org/10.1128/msystems.00039-18

Robinson DG, Storey JD. (2014). subSeq: Determining Appropriate Sequencing

Depth Through Efficient Read Subsampling.

https://doi.org/10.1093/bioinformatics/btu552

Dixon P. (2003). VEGAN, a package of R functions for community ecology.

https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

14

15

16

17

18

19

20

21

22

23

https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.12688/f1000research.19675.1
https://doi.org/10.1093/nar/gkac1012
https://doi.org/10.1093/nar/gkab776
https://doi.org/10.1186/s12859-022-05103-0
https://doi.org/10.1101/2022.03.30.486478
https://doi.org/10.1093/bioinformatics/btt584
https://doi.org/10.1128/msystems.00039-18
https://doi.org/10.1093/bioinformatics/btu552
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

Melsted P, Pritchard JK. (2011). Efficient counting of k-mers in DNA sequences

using a bloom filter. https://doi.org/10.1186/1471-2105-12-333

Dove ADM, Cribb TH. (2006). Species accumulation curves and their

applications in parasite ecology. https://doi.org/10.1016/j.pt.2006.09.008

Chen S, Zhou Y, Chen Y, Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ

preprocessor. https://doi.org/10.1093/bioinformatics/bty560

Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. (2004). Application of

tetranucleotide frequencies for the assignment of genomic fragments.

https://doi.org/10.1111/j.1462-2920.2004.00624.x

Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev

VV, Rubin EM, Rokhsar DS, Banfield JF. (2004). Community structure and

metabolism through reconstruction of microbial genomes from the environment.

https://doi.org/10.1038/nature02340

Lin H-H, Liao Y-C. (2016). Accurate binning of metagenomic contigs via

automated clustering sequences using information of genomic signatures and

marker genes. https://doi.org/10.1038/srep24175

Van Rossum T, Ferretti P, Maistrenko OM, Bork P. (2020). Diversity within species:

interpreting strains in microbiomes. https://doi.org/10.1038/s41579-020-0368-1

Quince C, Nurk S, Raguideau S, James R, Soyer OS, Summers JK, Limasset A,

Eren AM, Chikhi R, Darling AE. (2021). STRONG: metagenomics strain resolution

on assembly graphs. https://doi.org/10.1186/s13059-021-02419-7

Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield

JF. (2021). inStrain profiles population microdiversity from metagenomic data and

sensitively detects shared microbial strains. https://doi.org/10.1038/s41587-020-

00797-0

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I,

Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS,

Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R,

Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia

BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C,

Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W, Singer SW,

Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin H-H, Liao

Y-C, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M,

Klenk H-P, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin

EM, Darling AE, Rattei T, McHardy AC. (2017). Critical Assessment of

24

25

26

27

28

29

30

31

32

33

https://doi.org/10.1186/1471-2105-12-333
https://doi.org/10.1016/j.pt.2006.09.008
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1111/j.1462-2920.2004.00624.x
https://doi.org/10.1038/nature02340
https://doi.org/10.1038/srep24175
https://doi.org/10.1038/s41579-020-0368-1
https://doi.org/10.1186/s13059-021-02419-7
https://doi.org/10.1038/s41587-020-00797-0
https://doi.org/10.1038/s41587-020-00797-0

Metagenome Interpretation—a benchmark of metagenomics software.

https://doi.org/10.1038/nmeth.4458

Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF. (2012).

Time series community genomics analysis reveals rapid shifts in bacterial

species, strains, and phage during infant gut colonization.

https://doi.org/10.1101/gr.142315.112

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. (2017). Salmon provides fast

and bias-aware quantification of transcript expression.

https://doi.org/10.1038/nmeth.4197

34

35

https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1101/gr.142315.112
https://doi.org/10.1038/nmeth.4197

