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A high-throughput
iImaging approach to track
and quantify single-cell
swimming

Live imaging of swimming cells can yield insight into an organism’s
viability and responses to environmental stimuli. We developed a
microscopy workflow and image analysis pipeline, SwimTracker, to
track motility phenotypes from swimming cells in high throughput.
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Purpose

We need robust, high-throughput methods to observe and quantify biology across
species. Historically, quantitative measurement of single-cell motility, even at low
throughput, has proven challenging partly due to the difficulty of isolating cells [1]. We
previously addressed the issue of cell isolation using agar microchambers [2], an
effective but low-throughput method for observing long swimming trajectories of cells.
Here, we develop a new single-cell motility data acquisition and analysis workflow
(SwimTracker) that increases the throughput and versatility of our previous sample
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preparation approach (microchambers), and we demonstrate its application to more
sample preparation methods (e.g., swimming in microtiter plates). We show that this
approach enables robust quantitative readouts of motility even without isolating single

cells.

We developed this strategy by 1) scaling image acquisition using the automation
capabilities of our commercial microscope software, 2) directly comparing two types
of vessels (agar microchambers and 384-well microtiter plates) to increase the
flexibility of the assay, and 3) streamlining and automating the cell tracking and
statistical analyses to make the assay robust and high-throughput.

This resource should be helpful for researchers studying motility in unicellular and
small multicellular organisms. Our approach allows for extremely high throughput
analysis of single-cell motility data (10s of thousands of cells) even without isolating
single cells.

- This pub is part of the platform effort, “Microscopy: Visually interrogating the

natural world.” Visit the platform narrative for more background and context.

« All associated code for tracking cell trajectories, calculating motility metrics, and
conducting statistical analysis (the SwimTracker pipeline) is available in this GitHub

repository.

- All data, including the raw time-lapse microscopy data and computed cell

trajectories, is available via the Biolmage Archive.

The strategy

We're using microscopy to capture phenotypes at high throughput. In this work, we
focus on motility, an evolutionarily conserved, information-rich readout impacted by
many biological processes, including life stage, metabolism, and physical and sensory
interactions with the environment [3][4][5]. Motility is common to multicellular and
unicellular organisms [6][7] and takes diverse forms (e.g., walking, jumping, gliding,
crawling, etc.). We're focused on motility in liquid (swimming), a form of movement

common to many protists, an evolutionarily diverse and under-characterized
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taxonomic group that is the focus of many studies at Arcadia [8]. Thus, we needed a
flexible and easy method to capture motility phenotypes in high throughput across

many species and environments.

The problem: Current methods for acquiring
and analyzing motility data don't scale

Our prior approach to in vivo imaging, which let us track individual cells, used agar
microchambers to isolate cells. This works especially well for capturing long swimming
trajectories but doesn't efficiently scale either to many cells (hundreds to thousands)
or many different species and conditions because each differing group requires its
own agar pad. In addition, our previous motility analysis workflow is likely too slow for

the large dataset size required for our future high-throughput analyses.

Our solution: A streamlined workflow to acquire,
process, and analyze microscopy videos to
study motility

We created a method to 1) capture cell trajectories from many pooled individuals, 2)
extract features of their movement, and 3) compare motility metrics across groups
(Figure 1). Our workflow acquires 20-second brightfield videos at 20 frames per
second and then quantifies features of swimming in single-celled organisms. We
increased the data acquisition by loading cells in microtiter plates and by automating
the acquisition of time-lapse microscopy videos using Nikon’s NIS-Elements software
(JOBS) software.

The bulk of this resource is a computational pipeline (“SwimTracker”) for segmentation,
cell tracking, and extracting motility metrics from the time-lapse microscopy videos
(Figure 1). In addition, we generated a set of Jupyter notebooks that let you aggregate
these summary motility metrics, statistically compare them across different
populations of cells, and visualize differences between them via univariate and

multivariate analysis (Figure 1).



We also describe how we applied
this strategy to measure swimming
in the unicellular alga
Chlamydomonas reinhardtii and
validated it regarding imaging time,
sample preparation, and imaging
vessel. We less rigorously tested
but also validated that we could
track swimming in organisms
smaller (5 um) and much larger (125
pMm) than 8 um-long
Chlamydomonas (Supplemental
Figure 1 and Figure 2).

These in vivo imaging methods let
you quantitatively compare diverse
swimming phenotypes across
groups of interest. We think they'll
be relevant for researchers
interested in understanding the
mechanisms of movement, such as
ciliary/flagellar beating and the
responses of protists to drugs and
other stimuli. The high throughput
enabled by our approach also
allows the study of many species
and environmental conditions.

The approach
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Overview of our approach to high-
throughput motility data acquisition
and analysis.

We've highlighted features of the
SwimTracker computational pipeline
and its compatibility with a range of
sample preparation options for imaging.

To develop this swimming assay for single-celled organisms, we first established an

automated protocol for recording time-lapse microscopy videos (see “Microscopy”)

using a unicellular algae Chlamydomonas reinhardtii (see “Cell culture and preparation

for imaging”) in two different sample formats (see “Vessel preparation”). The two

formats, or vessels, were agar microchambers (we refer to these as “microchambers”)

and individual wells of a 384-well microtiter plate (we refer to these as “wells”). We
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compared these two sample formats to see whether one might be better for particular
use cases, potentially increasing flexibility for the user (spoiler: they both work, but
format really matters. More info on that in “Vessel type strongly impacts motility”).

Sample preparation

Cell culture and preparation for imaging

We ordered wild-type Chlamydomonas reinhardtii strain CC-124 from the
Chlamydomonas Resource Center (University of Minnesota). After receiving the strain

from the culture center, we prepared lawn plates as described previously [9]. We
maintained clonal populations from stock streaks by live transfer once every two
weeks on 1.5% agar plates with tris-acetate-phosphate (TAP) medium. We incubated
plates at room temperature under 12:12 light: dark cycles. For all motility experiments,
we transferred cells (1 cm strip using a loop) from lawn plates to water to induce the
mixed-stage cells to become gametes, which are flagellated and motile [10][11]. We
resuspended these cells in water by agitating the loop against the inside wall of a1.5
mL microcentrifuge tube containing 500 L of sterile Milli-Q water. We wanted to test
factors influencing the proportion of cells that became gametes. To do this, we left
tubes on the bench for 4 or 21 h to compare populations of cells that spent different
amounts of time in water and might be at different stages of transition to gametes. We
also compared cells that we pipetted from either the topmost portion of the water or
the middle but above the pellet of settled cells.

We ordered wild-type Isochrysis galbana strain UTEX987 from the Culture Collection of
Algae at The University of Texas at Austin. After receiving the strain, we grew 200 mL
liquid cultures in Erdschreiber’s medium on an orbital shaker at 120 rpm at room
temperature under 12:12 light: dark cycles. We diluted cells two-fold in synthetic
seawater.

We ordered wild-type Paramecium tetraurelia strain 8s 4-d2 from the Culture

Collection of Algae and Protozoa. After receiving the strain, we prepared liquid cultures

in Chalkey’s medium pre-seeded with C. reinhardtii strain CC-124 as a food source. We
maintained 10 mL cultures on the bench at room temperature without shaking in T75
cell culture flasks.
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Vessel preparation

We imaged cells in two types of vessels — agar microchambers and microtiter plates
(Figure 2).

We made agar microchambers using a PDMS stamp purchased from RMS
Microstamps [2], following our protocol, “Molding_ microchambers in agar with PDMS

stamps for live imaging” [12]. The dimensions of the stamp's protrusions resulted in

circular indents in the agar that were 100 um in diameter and 40 um deep. Because
these microchambers are so small, shallow, and numerous (~10,000 for a stamp % in?),
pipetting directly into individual wells is impossible; therefore, we load a single strain or
species into each individual stamped piece of agar.

To prepare samples on agar microchambers, we wetted the surface with 5-10 pL of
water and then added 2 pL of cells onto one section of the agar at a time. We allowed
the drop to spread across the agar and then visually checked the distribution of cells
across the microchambers using an Olympus CK 2 inverted phase microscope. We
repeated this process 2-5 times to ensure the cell density was somewhat evenly
distributed across the microchambers. Before placing the coverslip (#1.5 thickness for
imaging), we used a Kimwipe to wick up water at the edge of the agar and glass. Finally,
we sealed the coverslips using a small paintbrush to apply VALAP (1:1:1 mixture of
vaseline, lanolin, and paraffin) heated to 70 °C.

To load microtiter plates with either C. reinhardtii or Isochrysis galbana, we pipetted 20
pL of cells into the bottom of a well of a 384-well, black-walled, glass-bottom plate
(Cellvis, #P384-1.5H-N). To pipette Paramecium tetraurelia, we first poured organisms
into a 12-well plate. We visualized them on a phase contrast microscope before gently
pipetting them using a wide-bore pipette tip (Molecular BioProducts, ART 200G) and
transferring them into wells of the 384-well plate described above.

Microscopy

Hardware: Objective, microscopes, cameras

The preferred imaging setup differs depending on whether the cells have been loaded
into agar microchambers or microtiter plates. Therefore, we performed brightfield
time-lapse imaging on two different microscopes. For samples in agar
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microchambers, we imaged using an upright Nikon Ni-E microscope equipped with a
Photometrics Kinetix digital sCMOS camera and built-in LED light source. We imaged
samples in glass-bottom microtiter plates using an inverted Nikon Ti2-E & Yokogawa
CSU W1-SoRa confocal microscope fitted with an ORCA-Fusion BT digital sSCMOS
camera (Hamamatsu) and a LIDA Light Engine (Lumencor) for illumination. However,
this imaging could be done with any inverted widefield microscope and camera. We
used the same type of objective lens (Nikon Plan Apo 10x 0.45 Air objective) for both
microscopes. For both microscopes, we acquired data using the same software: Nikon
NIS-Elements AR (version 5.42.03) and the “High-Content Analysis” package to
implement automation.

Image acquisition parameters

The parameters we used for acquiring image data were:

« 20 stime-lapses recorded in brightfield at the rate of 20 frames per second (50 ms
exposure time) with a 10x 0.45 NA air objective

- Light intensity set to maximize the dynamic range of the acquisition system

« 610 nm longpass filter (ThorLabs FGL610S) placed over the light source of the
upright microscope [1]

« To prevent phototaxis, we imaged cells using red light as described previously [2]

We used these parameters to acquire videos on both the upright Ni-E widefield
microscope (using agar microchambers) and the inverted Ti2-E microscope (using

microtiter plates).

Automated acquisition workflow

We increased throughput by automating time-lapse microscopy acquisitions. We
developed the automation workflows using Nikon NIS-Elements JOBS automation
software and provide them on GitHub. While these workflows can only immediately be
implemented with compatible hardware and software, most modern microscopy
software packages offer the same functionality. The workflow consists of the following
steps:


https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/main/resources/microscopy_docs

1. Define the optical configuration: Set optical parameters such as the objective

lens magnification, light intensity, exposure time, and time-lapse duration.

2. Define the stage area: Set the bounds of the translation stage to either the limits
of the slide area containing agar microchambers or to match the geometry of the
microtiter plate. If possible, define a focus surface to compensate for sample tilt

as the stage is translated across the sample.

3. Define atiling scheme: Create a grid of tiles that'll encompass the defined stage
area. For imaging cells in microchamber pools, we generally set the field of view to
contain 16 pools and tile with a small amount (1-2%) of overlap. For imaging cells
in microtiter plates, we generally acquire one time-lapse per well. However,
depending on cell density, it might be better to capture multiple fields of view per

well.

4. Run the acquisition: For each field of view defined by the tiling scheme, acquire a
time-lapse with the chosen optical configuration.

The resource

We're sharing an approach we developed to quantify swimming in small organisms
using a computational pipeline, SwimTracker. While we also focus on the sample
preparation used for measuring swimming unicellular algae, this part of the workflow is
flexible — the rest works using any time-lapse data as input (Figure 1). SwimTracker
takes raw time-lapse microscopy data of swimming cells, applies cell tracking, and
outputs comma-separated value (CSV) files with extracted motility metrics and MP4
videos with animated trajectories of the tracked cells. Our GitHub repo for
SwimTracker also includes a set of Jupyter notebooks for performing multidimensional
analysis and statistical tests on the data.

In “SwimTracker tracks cells and measures a suite of motility metrics,” we give an

overview of our assay and the statistics SwimTracker calculates. In “Validating our
strategy,” we walk through quality-control checks we ran to ensure our results weren’t
affected by some obvious potential variables. While some of the variables we checked
had little impact or were somewhat specific to testing the workflow on C. reinhardltii, it's
worth noting that we found the biggest differences in our calculated motility metrics
based on the vessels in which we confined cells for imaging. We discuss these tests
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and recommendations for when to use different vessel types in “Vessel type strongly

impacts motility.”

SwimTracker tracks cells and measures a suite
of motility metrics

We primarily used Chlamydomonas reinhardtii, a motile, unicellular alga, to develop
this method. We prepared C. reinhardtii gametes in two types of vessels for brightfield
imaging: agar microchambers and 384-well plates (see “Sample preparation”).
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A schematic of the image-processing pipeline for organisms swimming in
agar microchambers (left, orange) and wells of glass-bottom microtiter
plates (right, purple).

We don’'t need to detect microchambers or spatially crop the time-lapse video

for trajectories in wells.

We developed “SwimTracker” as a Python-based image processing pipeline to
calculate cell trajectories from the time-lapse videos. It processes images of samples
in agar microchambers (Figure 2, left) with two additional steps than the workflow for
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contrast of the cells. Then, the

pipeline binarizes the videos using thresholding (Otsu’s method, Figure 2, “Segmented
cell(s)”). Finally, it tracks cells using btrack (version 0.6.5) [13] with the default

configurations. SwimTracker outputs the trajectories of each segmented cell in CSV
format for subsequent analysis.
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You can find the SwimTracker pipeline for tracking cell trajectories, calculating

motility metrics, and conducting statistical analysis in this GitHub repository (DOI:
10.5281/zen0d0.14042793).

To quantify swimming behavior, we calculated 11 metrics that capture various aspects

of a unicellular organism's movement based on existing methodologies [14]. We

describe all 11 metrics in Table 1, six of which we illustrate in Figure 3.

Motility metric

Description

Total time*

Total time of cell trajectory

Total distance*

Total distance traveled along a trajectory

Net distance*

Distance between the start and end point of the trajectory

Max sprint length

Maximum distance traveled in a given time interval

Confinement ratio*

The ratio of net distance to the total distance

Mean curvilinear
speed*

The average speed of a cell along its curved trajectory

Mean linear speed

Average speed of a cell along a straight path between its
start and end point

Mean angular speed*

Average rate of angular change

Number of rotations

Number of rotations a cell makes along its trajectory

Number of direction
changes

Number of times a cell changes its direction minus the
total number of sign changes in its velocity

Pivot rate

The ratio of the number of direction changes to the total
distance

Table 1

Table of motility metrics that SwimTracker calculates to characterize a

cell’s trajectory.

Metrics with asterisks are illustrated in Figure 3.
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Raw trajectories require filtering

In our trajectory data, some traces of single cells were clearly problematic. For
example, in wells, many cells swim in and out of the focal plane, leading to many short
trajectories and the possibility of capturing more than one trajectory per cell.
Furthermore, non-motile or minimally motile cells in both wells and microchambers
can lead to trajectories with long temporal duration but little spatial displacement. To
eliminate trajectories from minimally motile cells and reduce the likelihood that we
were analyzing more than one trajectory per cell, we filtered trajectories to be at least
10 s in duration (total time) and 20 um in length (total distance). Both filters are
implemented in “1_compute-summary-motility-metrics.ipynb.”

Validating our strategy

SHOW ME THE DATA: All data, including the raw time-lapse microscopy data
and computed cell trajectories, is available via the Biolmage Archive (DOI:
10.6019/S-BIAD1298).

We performed a series of tests to evaluate the impact of experimentally controllable
parameters on the data acquisition and analysis workflow. First, we tested whether our
imaging parameters (e.g., duration, temporal sampling density, light exposure) affected
swimming behavior. Next, because we wanted to apply this approach to assay gametic
swimming, we examined two experimental factors influencing the life history transition
to gametes. Finally, we tested whether different vessels produce different swimming

statistics.

Imaging time doesn’t affect swimming

We wanted to image as briefly as possible to enable large-scale data acquisition
across organisms or samples, but acquisition time could impact the motility statistics.
Therefore, we assessed whether motility measures changed across the acquisition
period (Figure 4, “2_temporal-variation-in-motility-metrics.ipynb”). We computed linear

regressions between each individual metric and image acquisition time to calculate
correlation coefficients for these relationships (Figure 4, Supplemental Table 1). Ten of

the eleven metrics weren't correlated with imaging time (o > 0.1in all cases, linear
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regression, Supplemental Table 1), the exception being max sprint length, which

weakly correlated (p = 0.048, Supplemental Table 1). In the scatter plots below, we

highlight the three metrics we focus on for the rest of the analyses (Figure 4). Overall,
we found that on these timescales, the swimming behavior of the cells isn't influenced
by the imaging duration.
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Figure 4

Scatter plots showing the variation of several motility metrics over the
duration of an imaging experiment in microchambers.

Each point in the scatter plot corresponds to an individual cell’s trajectory at a
particular 20 s interval during the experiment. Linear regressions show no
significant correlation between imaging duration and confinement ratio and
mean curvilinear speed (p > 0.1, linear regression) but a slight correlation with
max sprint length (p < 0.05, linear regression). Note that we translated the stage
between each time-lapse such that in each 20 s time interval, we imaged a
different group of cells. Multiple points exist at each 20 s interval in the scatter

plots because each field of view contains multiple microchambers.

SwimTracker can capture subtle effects on motility

We wanted to evaluate SwimTracker's ability to capture subtle changes in motility.
We've worked extensively with the single-celled alga Chlamydomonas reinhardtii and
have previously used differing sample preparations to alter its motility [9]. We,

therefore, evaluated the influence of two factors on maotility. We include the data here
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not to focus on the results but to show an example of the type of univariate
comparisons that SwimTracker can quickly generate.

First, we induced gametogenesis in actively growing vegetative populations for
differing amounts of time (either 4 h or 21 h [10][11]) with the expectation that longer
induction will result in more gametes in the population. Gametes have motility that
differs from vegetative cells [15]. Second, following induction, we collected cells from
the top of the water column and cells from the middle of the water column, expecting
that the more motile cells would be higher in the water column. We then evaluated

whether SwimTracker could capture the expected differences in maotility.

We found that while neither the position in the tube nor time in water significantly
impacted the mean angular speed or confinement ratio, they both influenced the
mean curvilinear speed (Figure 5). Cells we pipetted from the top of the tube were 17%
faster (as indicated by the mean curvilinear speed) than those from the middle (p =
0.046, Mann-Whitney U) (Figure 5, A). Moreover, cells that spent only four hours in

water swam on average 24% faster than those that spent 21 h in water (p = 0.039,
Mann-Whitney U) (Figure 5, B). These results showed that both the position of cells in
the tube and the time spent in water can affect motility. This was unsurprising, but
shows how SwimTracker can be used for 1-dimensional comparisons between
variables of interest.
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Figure 5

Kernel density estimates of motility metrics for cells grouped by different
experimental variables.

(A) Distributions of confinement ratio, mean curvilinear speed, and mean angular
speed for cells we pipetted from the top of the tube (light green) versus the

middle of the tube (dark green).

(B) Distributions of the same metrics for cells that spent 4 h in water (light blue)
vs. 21 h in water (dark blue) before imaging.

Statistical significance: * indicates p < 0.05; ns indicates p > 0.05 as determined
by Mann-Whitney U tests.



Vessel type strongly
impacts motility

While we'd ideally collect motility data that
reflects normal behavior in a realistic
environment, vessel type may impact the
motility we're measuring. Therefore, we
examined the effect of the sample format
(the “vessel”) on cell swimming (see “Vessel
preparation” in Sample Preparation). Our
goal was to test whether cells behave
differently in the two types of vessels, agar
microchambers vs. microtiter plate wells,
which differ in total volume, confinement,
and the number of cells they can
accommodate (Figure 2). While the agar
microchambers [2] are extremely useful for
imaging many cells of a single species, the
sample preparation is laborious and difficult
to apply to many conditions or strains. Some
of our future motility work requires
comparisons between many treatments, so
we wanted to see if we could quantify cell

trajectories in microtiter plates.

We found that swimming behavior in
microchambers differed substantially from
that in wells of microtiter plates. We
compared confinement ratio, mean
curvilinear speed, and mean angular speed
from cell trajectories in microchambers to
those in wells (Figure 6). We expected that
the confinement ratio, which is the net
distance of a cell track divided by the total
distance, would vary between
microchambers and wells because of their
differing physical dimensions (Figure 2). In
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The choice of vessel type
influences the distribution of
certain motility metrics.



line with this expectation, we found that the The distributions of the

cell movement was more confined in confinement ratio and mean
microchambers (lower confinement ratio) curvilinear speed are much
than cells in wells (microchambers: 011 + narrower for pools than for
0.09; wells: 0.50 = 0.23; Mann-Whitney U, p wells, while the mean angular
< 0.001) (Figure 6, A and B). speed appears less impacted.
We compared mean curvilinear speeds and **** indicates p < 0.001and ns
found that cells were > 2x faster on average indicates p > 0.05, Mann-

in microchambers than cells in wells Whitney U.

(microchambers: 33 = 17 um/s; wells: 13 + 10

um/s; Mann-Whitney U, p < 0.001) (Figure 6,

A and C). A previous study examined the effect of microchamber size on C. reinhardtii
swimming using microfluidics. They varied the diameter but not the height of their trap
sizes and found that cells swam faster in wider traps (200 um diameter, 30 um height)
[1]. The vessel types that we examined varied from each other in not only x and y
dimensions but also in z, resulting in substantial differences in volumes (see Figure 2).

We observed no effect of vessel type on mean angular speed (Figure 6, B and C).

Taken together, these results demonstrate that the choice of vessel type influences
the distribution of measurements for certain aspects of swimming, highlighting the
critical importance of selecting the correct sample preparation method for the specific
experimental task.

Recommendation

The vessel type is the strongest sample preparation factor influencing motility
we've experimented with. If you aim to track single cells, select a stamp that
creates agar microchambers with dimensions appropriate for your organism's
size and swimming behavior (see [2]). If you want to compare motility metrics for
different populations of cells, then microtiter plates are easier to use.

While the two-dimensional plots were informative, we wanted a more holistic sense of
motility differences without selecting the metrics to describe them a priori. We
performed a principal component analysis (PCA) on six metrics (Figure 7, Table 1). We

selected these six metrics because they're ratio-based and not biased by trajectory
duration. Because of the limited depth of focus, the trajectories we obtained from



microchambers have a longer duration, on average, than those from cells in wells. This
PCA analysis revealed a separation between microchamber and well trajectories with
limited overlap in PC 1 (Eigure 7, A). This component's most heavily weighted features
are max sprint length, confinement ratio, and mean curvilinear speed (Figure 7, B). This
suggests that these two types of motility differ in speed and amount of turning, which
is consistent with our analysis of the individual metrics. And these two classes of
trajectories can be almost completely separated based on our metrics (Figure 7, A;
PC).
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Principal component analysis (PCA) on motility metrics
of Chlamydomonas reinhardtii swimming in two
different vessels.

(A) Separation of trajectories between groups as a function
of the first two principal components.

(B) The weights for each of the six motility metrics are
included in the PCA. The first PC seems to discriminate the
trajectories based on how fast and straight they are, while
the second PC is dominated by confinement.

Taken together, these results demonstrate that our workflow lets us analyze motility for
a much greater number and diversity of samples and allows us to distinguish subtle



behavioral differences across experimental conditions.

Recommendation

PCA lets you distinguish between groups of interest based on many motility
metrics at once. By looking at the PCA plots and the weightings, you can learn
which attributes drive the separation of the groups.

Additional methods

We used ChatGPT to suggest wording ideas and then chose which small phrases or
sentence structure ideas to use. We also used ChatGPT to help clarify and streamline
text that we wrote. Additionally, we used Grammarly Premium to help copy-edit draft
text to match Arcadia's style and to help clarify and streamline text that we wrote.

Key takeaways

Our computational pipeline, SwimTracker, lets you quantify swimming trajectories of
single-celled organisms from time-lapse microscopy datasets in high throughput. If
you aim to acquire high-resolution, single-cell tracks of only a few types of cells for
extended periods of time, agar microchambers are optimal. However, if cell
trajectories of a population of cells are sufficient and your goal is to compare many

treatments, then microtiter plates are best.

You can find the SwimTracker pipeline for tracking cell trajectories, calculating
motility metrics, and conducting statistical analysis in this GitHub repository.

Takeaways

1. SwimTracker works on brightfield microscopy videos to quantify a suite of motility

metrics for single cells that swim.


https://github.com/Arcadia-Science/2024-unicellular-tracking/tree/v1.1

2. SwimTracker works on isolated cells (in agar microchambers) and groups of cells

(in microtiter plates).

3. Choosing a vessel type for organisms can influence the throughput of the assay

and even cell swimming behavior.

Next steps

We plan to use SwimTracker to compare motility from populations of Chlamydomonas
algae with different genetic backgrounds (e.g., hybrid progeny from a genetic cross, as
well as mutant strains that model specific diseases) and under different environmental
parameters (e.g., nutrients, drug treatments).

In the future, we'll use data-adaptive and machine-learning-based approaches to
classify cell motility behavior, allowing us to rapidly identify environmental or genetic

parameters impacting motility.

We did some preliminary work to confirm that this imaging workflow could work on
organisms of various sizes, including organisms both smaller (5 um) (Supplemental

Figure 1) and larger (125 pm) (Supplemental Figure 2) than C. reinhardtii (8 um). We'd

love to hear how our approach works as a motility assay for swimming organisms
within or beyond that size range and whether you can adapt it for other types of
locomotion (e.g., crawling, gliding, etc).
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