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Raman spectroscopy
enables rapid and
iInexpensive exploration of
biology

To test its utility in analyzing biological samples, we built an open-
source Raman spectrometer and collected spectra from chilis, beer,
and algae. We could stratify samples, classify replicates, and link
spectra with quantitative traits of beer (ABV) and chilis (perceived
heat).
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Purpose

Raman spectroscopy is a non-destructive technique that provides a unique chemical
fingerprint based only on the interaction of light with a sample. It's been used
extensively in materials science applications and more recently, in biology. This
technique doesn’t require molecular or chemical labeling (it's “label-free”), making it a
potentially useful tool for studying organisms without genetic tools.
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We wondered if we could build a Raman spectrometer using open-source protocols
and use it to rapidly distinguish samples based on chemical properties in a label-free
way, with minimal data processing. We decided to try a hackathon to test this idea —
we selected three types of samples (beer, chilis, and algae) and found that the spectra
were reproducible and had sufficient dynamic range to do comparative analyses. We
were able to use the Raman spectra to differentiate the three types of samples and to
distinguish subgroups of samples within a given type. Beer sample spectra varied by
alcohol content and by type. Chili pepper data clustered by perceived heat (Scoville
units) and color. We could differentiate algae by genetic background. Finally, we found
that specific spectral regions correlate with quantitative characteristics of beer
(alcohol by volume) and chilis (perceived heat).

Our work highlights the utility and ease of this technique. We hope it will empower
scientists to capture the chemical composition of samples and extract a great degree
of high-dimensional data from Raman spectra. We imagine this report could also be
useful for science educators who want to use the OpenRAMAN resource and our code
to run a lab class on Raman spectroscopy. We'd love to know if you try this technique
and whether it allows you to distinguish features in a way that isn’t possible or is more
difficult using other methods.

« All associated code for analyzing the spectral data is available in this GitHub

repository.

- Data from this pub, including the raw spectra of beer samples, chili peppers (seeds
and flesh), and algal samples, are available in the “data” folder of the GitHub repo.

- The comprehensive parts list that we used to build the OpenRaman is in the
“resources” folder of the GitHub repo.

Background and goals

At Arcadia, we're mapping genetic and phenotypic diversity across the tree of life to
aid in predictive modeling and biological discovery. We've recently shown that high-
dimensional phenotyping can improve the accuracy of phenotypic models [1] and,
likely, genotype-to-phenotype mappings. However, measuring high-dimensional
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phenotypes is often laborious, most studies only measure one phenotype, and
phenotyping often requires you to know what you're looking for by pre-selecting a
specific phenotype to quantify. In this pub, we evaluate the suitability of Raman

spectroscopy for high-throughput, high-dimensional agnostic phenotype acquisition.

Raman spectra capture information about the chemical composition of a sample.
Samples are briefly exposed to a high-intensity, single-wavelength light source. Most
of the light is reflected or scattered elastically and is the same wavelength as the
incident light. A minor fraction of the scattered light shifts wavelength. These shifts are
caused by energy loss through vibrational or rotational absorption and shifts are
characteristic of specific chemical bonds. Thus, the spectral distribution and intensity
of this inelastically scattered light provide a fingerprint for the chemical bonds in the
sample [2].

Raman spectroscopy of cells has recently been shown to contain holistic proteomic
[3] and expression [4] data. In these studies, the authors used cellular Raman spectra
to predict entire proteomes and single-cell expression profiles. Furthermore, we've
shown that spectra of differing species reflect their phylogenetic relationships [5].

To better evaluate the utility of Raman spectroscopy for the analysis of biological
information, we conducted a two-day hackathon [6] where we used a Raman
spectrometer (OpenRAMAN) that we built in preparation to collect spectra for three

types of biological samples (beer, chili peppers, and algal species). We then looked to
see if we could 1) use the spectra for clustering/classification and trait/feature
prediction, and 2) identify the importance of specific wavelengths for these predictive
tasks. We selected samples that were likely to have clear and quantifiable dimensions
of variation, such as alcohol content for beer and perceived heat for chili pepper.

Raman spectra contain enough information to not only differentiate samples but also
to differentiate sample types based on combinations of features. Skip straight to these
results or continue reading to review our methodology.

SHOW ME THE DATA: Data from this pub, including the raw spectral data, are
available here (DOI: 10.5281/zen0d0.11406248).
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The approach

We ran an internal hackathon to quickly assess the utility of Raman spectroscopy in
analyzing complex biological samples. Hoping to answer this question in just a few
days, we chose a low-cost, open-source spectrometer to build ahead of time and test
during the hackathon (OpenRAMAN). We designed our experiment to test three types

of samples with varying attributes that we expected could be differentiated by their
Raman spectra. We selected beer with varying levels of alcohol content (ethanol) and
of different varieties representing different brewing yeasts, hops, malt, and other
ingredients. We chose chilis that ranged in capsaicin level, color, and state (fresh vs.
dried). Finally, we used algae species of varied genetic backgrounds that we were
already using in other projects [7].

Building an open-source Raman spectrometer

We built our Raman spectrometer using instructions from OpenRAMAN and_YouTube
(Figure 1).
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Figure 1

Configuration of the OpenRAMAN spectrometer.

(A) Photograph of the assembled OpenRAMAN spectrometer.

(B) Corresponding schematic with labeled parts and the path of
green, yellow, orange, and red light. We used a green laser (532 nm),
but we've depicted its path in blue to make the image color-blind-
friendly.

We built our spectrometer according to the directions for the “Starter Edition” with a
few minor changes. Namely, we made the 3D-printed components using inexpensive
fused deposition modeling instead of the suggested selective laser sintering due to
tool availability. We also modified the inner diameter of the camera bracket from 32
mm to 34 mm to accommodate our camera lens. Finally, the 550 nm dichroic mirror
was not available, so we replaced it with a 567 nm dichroic mirror (Thorlabs DMLP567).
For ease of communication with our analysis computer, our camera (Teledyne Flir BFS-



U3-16S2M-CS) used a universal serial bus 3 interface instead of a gigabit ethernet

interface.

We've put together a comprehensive parts list that includes all the parts we used, plus

other necessary tools and materials, which you can find here:
OpenRaman starter edition (comprehensive BOM) -
2020-66_3 - STARTER EDITION ASSY.csv

Data collection and sample preparation

From the options available at Berkeley Bowl West (Berkeley, CA, USA), we selected a
variety of beers differing in alcohol content (alcohol by volume, ABV) and style. We
collected the characteristics of these beers from both brewery web pages and the
beer information aggregation website Untappd. These data reflect the values as of
March 21st, 2024; given their crowdsourced origin, they're likely to change over time.
For sample preparation, we poured beer into weigh boats, where we agitated the beer
to reduce bubbles and carbonation before pipetting 5 ul of each sample onto Parafilm

and placing it in the sample chamber of the spectrometer.
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Untappd

Beer Brewery I?% Style IBU (’;ﬂ'ﬁ ;';t:ppd
five)
Imperial .
Lough Gill Irish (S:::cf)eo?h
Dark Majik (Sligo, 11.96 | oatmeal (5} 3.91 Rich: SV\;eet
Ireland) coffee Booz’
stout y
Del Cielo 2?(')?:;53
Sneaky AF BreW|.ng Co 10.0 Triple 6 3. 99 | Light
(Martinez, IPA Bodied:
CA) Earth; Piney
Hoppy;
Almanac Hazy Citrus;
Big Love (Alameda, 9.0 | double 0 3.88 | Smooth;
CA) IPA Strong; Ligh
Bodied
Gnomes garl[?énrﬁl Hazy :2?3;_”'03/;
Gone (Oakland, 8.1 | double 0 4.13 Pineapple;
Rogue CA) IPA Malty
Otto's Cellarmaker West glril:))éth
Jacket g)skland, 7.6 I(IJ:)oAast 58 3.99 Caramel,
Sweet Dry
Light
Dokkaebier gﬁgsd;
Kimchi Sour | (Oakland, 6.6 | Sour 14 3.56 Citrus'y'
CA Hoppy;
Grainy
Ginger; Tart;
Almanac Haz Light
Love (Alameda, 6.1 IPA y %) 3.88 | Bodied;
CA) Spicy;
Smoky
Original
Pattern . C!ean,
Colour Me Brewin Irish red Citrus,
Murphy (Oaklar?d 6.0 ale 0 3.86 Orange, Dry,
' Hoppy

CA)




Untappd
ABV rating | Untappd
Beer Brewery (%) Style IBU (outof | tags
five)
Laughing Dark;
Hunky Monk (San S::(r?de Smooth;
Jesus Francisco, 5.5 aIe%Ie 0 3.71 Coffee; Thin
CA) P Flat
Gigantic ELBIggited'
Kolschtastic Brewing Co 5.2 | Kolsch 25 3.60 | Clean; Flora
(Portland, Sweet:
OR) Hoppy
Temescal l;ggite ”
Temescal Brewing . ol
Pils (Oakland, 5.0 | Pilsner 3.71 3.71 g\lﬁsent,.Flora
CAl Hoppy
zl_(e)lrl]es Wayfinder I;ggite o
Nighgt]s (Portland, 4.9 | Lager 20 3.90 Clean; érisp
Edition) OR) Bright; Flora
Evil Twin Dark;
Even MORE Brewing 4.7 Dry 6 3 64 Smooth;
IRISH Jesus | (North ) stout ) Coffee; Thin
Haven, CT) Flat
Light
Bodied,;
Headlands . ’
Light Smooth;
Party Wave (Lafayette, 4.2 |, ag er 14 3.83 | Effervescen
CA Straw-like;
Watery
Table 1

Beer varieties sampled.

We selected 20 chili peppers from Berkeley Bowl West (Berkeley, CA, USA), aiming for
a wide distribution of spiciness and color. We dissected fresh and dried whole chili
pepper varieties into two different sample types (flesh and seed) using razor blades on
aluminum foil. Crushed red pepper flakes contain both seeds and flesh, so we
selected a fragment of flesh and a fragment of seed for testing. We cut the flesh into
roughly 0.5 cm? pieces and collected spectra from the interior face. We found that



spectra from whole seeds were qualitatively similar to dissected seeds, so we're
presenting only spectra captured from whole seeds here, but included the data
acquired from the pepper flesh in our GitHub repo. We used forceps to transfer pepper

samples onto Parafilm for data collection.


https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0

Chili

variety Abbreviation
(as in GitHub - Perceived heat Median -
Chili . . Chili
labeled repo . range (Scoville | Scoville
. . condition . . colol
at (arbitrarily units) units
Berkeley assigned)
Bowl)
Green bell | GrBe Fresh 5] 0 | Gree
Red Thai ReTh Fresh 110,000 | 110,000 | Red
Hot Italian
frying Holt Fresh 100-1,000 550 | Gree
Poblano Pbl Fresh 1000-1,500 1,250 | Gree
Ancho
(dried Ancho Dried 1,000-1,500 1,250 | Red
poblano)
VI—J:)r:garlan HuWa Fresh 1,000-15,000 8,000 | Yello
Chilaca Chil Fresh 1,0600-2,5600 1,750 | Gree
Serrano Serr Fresh 10,000-23,000 16,500 | Red
Chilide | Arpol Dried 15,000-30,000 | 22,500 | Red
arbol
Orange
habafero OrHa Fresh 150,000-350,000 | 250,000 | Oran
Red Fres Fresh Red
Fresno 2,500-16,000 6,256
Jalapeno Jala Fresh 2,500-8000 5,250 | Gree
Chipotle
(dried Chip Dried 2,5600-8,000 5,250 | Red
jalapeno)
:ggg"” InLo Fresh 25,000-100,000 | 62,500 | Gree
Crushed .
" CrRe Dried 32,000-48,000 | 40,000 | Red

red




Chili
variety Abbreviation
(as in GitHub - Perceived heat Median o
Chili . . Chili

labeled repo . range (Scoville | Scoville

. . condition . . colol
at (arbitrarily units) units
Berkeley assigned)
Bowl)
Shishito Shis Fresh 50-2060 125 | Gree
Anaheim Anah Fresh 500-2,500 1,500 | Gree
Yellow
wax YeWa Fresh 5,000-15,000 10,000 | Yello
Green
Thai GrTh Fresh 50,000-1600, 000 75,000 | Gree
New .
Mexico NeMe Dried 800-1,400 1,100 | Red
Table 2

Pepper varieties and phenotypes.

We collected spectra for both flesh and seed for each sample, but only present
the data for the seeds. All chili pepper samples are cultivars within the species
Capsicum annuum with the exception of the orange habafiero (Capsicum
chinense).

We collected spectra from several unicellular algae, including freshwater
Chlamydomonas reinhardtii, Chlamydomonas smithii, four hybrid strains from crossing
these species [7], and the marine alga Isochrysis galbana. Using sterile loops, we
transferred algae from solid media culture plates to Parafilm for data collection.



. . Medium (with 1.5%
Species Strain Source agar)
Chlamydomonas Tris-acetate-
reinhardtii cc-124 | CRC phosphate (TAP)
Chlamydomonas | . 1373 | cRe TAP
smithii

ACDC Arcadia Science from
13F3, Arcadia TAP + yeast extract
ﬁ;’éfi’gé’domonas 13F4, | Chlamydomonas (0.4%) + Carbenicillin
13F5, Diversity Collection (500 mg/L)
13F6 (ACDC)
, UTEX o,
Isochrysis galbana LB 987 UTEX Erdschreiber’s
Table 3

Algal types sampled.

Data analysis

We clustered spectra using linear dimensionality-reduction methods. First, we
performed unsupervised clustering of the full spectral dataset via principal component
analysis (PCA). We assessed sample relationships by comparing the first two principal
components (Figure 3). We then used linear discriminant analysis (LDA) to assess the
extent to which we could classify individual samples within each data class (beer, chilis,
algae). For each, we used the 1da function in the R package MASS [8] to find a linear
combination of spectral features that best classified samples (i.e., beer type, chili
variety, and algal species). We assessed each LDA by comparing the first two linear
discriminants (Figure 4).

Next, we assessed the extent to which we could identify regions of these spectra that
correlate with quantitative features of different beers or chilis. Specifically, we
examined the alcohol content of each beer (ABV), and, independently, the perceived
heat of each chili (Scoville units). We obtained ABV values from each beer can (Table 1)
and Scoville units from several sites including Wikipedia, Bonnie Plants, Chili Pepper

Madness, and Scoville Scale (Table 2). In cases where a chili variety had a range of

reported Scoville values, we used the median. The distribution of Scoville units was



https://www.chlamycollection.org/product/cc-124-wild-type-mt-137c/
https://www.chlamycollection.org/product/cc-1373-c-smithii-mt-sag-54-72/
https://utex.org/products/utex-lb-0987?variant=30992145055834
https://en.wikipedia.org/wiki/Scoville_scale
https://bonnieplants.com/blogs/garden-fundamentals/pepper-heat-levels
https://www.chilipeppermadness.com/frequently-asked-questions/the-scoville-scale/
https://www.chilipeppermadness.com/frequently-asked-questions/the-scoville-scale/
https://scovillescale.org/chili-pepper-scoville-scale/

highly skewed, so we transformed the data so that we could perform analyses that
assume a normal distribution. We added one to all Scoville values to eliminate zeros
and transformed these measures using logqo. For each sample, we collected between

two and four spectra. We used the median of these spectra for subsequent analyses.

We expect that many of the components of these spectra will not be useful in
predicting any particular quantitative feature of the samples. We, therefore, chose the
least absolute shrinkage and selection operator (LASSO) regression [9] as
implemented using the gimnet R package (version 4.1.8) [10]. Unlike the ordinary least
squares solution to regression problems, this method is regularized using the L1 norm
and expects that few model parameters contribute to a trait.

LASSO has a single tunable parameter, the L1 penalty (or A), that determines the
degree of regularization. To identify a value of A that leads to the most usefully
predictive model, we took a permutation-based approach. For 5,000 permutations, we
randomly subsampled 75% of our data. We then used this 75% to tune A through
cross-validation (according to [10]). We tested the predictions for each permutation on
the 25% of data that we didn’t use in the training. Following all permutations, we then
used the A that resulted in the most accurate predictive model to train a final model
using all of the data. For significance testing, we calculated confidence intervals for
each spectral position (pixel) from these permutations. We considered each location
significant at p < 0.05. We note that these are local statistical tests that do not account
for the multiple tests conducted in this study. The coefficients resulting from that final
model are those presented in Figure 5 and Figure 6.

All code generated and used for the pub is available in this GitHub repository
(DOI: 10.5281/zen0d0.11406248), including scripts and notebooks used for

processing and visualizing the data.

Additional methods

We used ChatGPT to help write code and add comments to our code. We also used it
to generate the average length and typical uses of the peppers in Table 2.


https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0
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The results

SHOW ME THE DATA: Access our raw Raman spectral data here.

Raw spectra are reproducible across technical
replicates

Since spectroscopic measurements can be influenced by various noise sources —
sample heterogeneity, hardware variability, fluorescence — we were interested in
qualitatively assessing how consistently our spectra performed before more complex
analyses (Figure 2). Encouragingly, spectra were similar within sample type (e.g., within
beer or chilis) and reproducible across technical replicates (Figure 2). Furthermore, the

spectra differed across sample types (Figure 2). Some of these differences seemed to
reflect readily apparent features of the samples. For example, samples with “greener”
color (green/yellow chilis and algae) seemed to have increased spectral intensity in the
1200-1400 pixel region (consistent with chlorophyll fluorescence; Figure 2, B-C).
Similarly, light beers displayed a spectral peak between 1,300-1,400 px that other beer
types lacked (Figure 2, A). We concluded that our measurements were sufficiently
consistent, and displayed enough dynamic range across samples, that quantitative
analyses would be interesting to pursue.
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Figure 2

Raman spectra of beer samples, chili pepper
seeds, and algae.

(A) We've ordered beers and their spectra by alcohol
content, with the highest ABV at the top.

(B) We've ordered chili pepper seeds and their spectra
by perceived heat/spiciness (Scoville units), with the

hottest at the top.

(C) For algae spectra, we've listed the two parent
species (Chlamydomonas reinhardtii and C. smithii)
first, then the hybrids from the genetic cross, and then
a more distantly related alga, Isochrysis galbana.

The mean spectrum for each sample (bold line) is the
average of two to four measurements (lighter lines) and
is shown as intensity (y-axis) across pixels (x-axis). The
y-axis for each spectrum is automatically scaled in
each plot to show the full range of intensity values.

Clustering the spectra lets us separate
samples by type

A potential benefit of Raman spectroscopy is that a single rapidly acquired
measurement may provide enough information to classify complex biological samples.
We explored this possibility by performing unsupervised clustering via principal
component analysis (PCA) on raw spectra. We reasoned that the outcome of the PCA
could inform us about the structure and richness of information contained within the
spectra. For example, if we observed extreme mixing of samples among the principal
components (i.e., no clustering), then we might conclude that the spectra are either too

complex or too noisy to easily identify samples from raw measurements. On the other



hand, if we found tight clusters corresponding to sample type, then spectra may be
highly sample-specific but lack enough quantitative information to usefully stratify
similar samples based on their biochemical differences.

Comparing the first two principal

€31 : . zii: components, we qualitatively found
02 S e i ® Algae that samples largely clustered by type
: ! and that we could separate them
N 22 .. . - linearly (Figure 3). For example, PC1
g 0o . appeared to mostly separate algae
L S from the other samples, while PC2
6.1 !; : : . delineated beer from chilis (Figure 3).
s -’ | | | c | Sample types also displayed
0 2 Pc14 G S qualitatively differing amounts of
variation. Algae samples were the
Figure 3 most variable, followed by beer and

then chilis (Figure 3). These findings

Spectral clustering of samples via suggest that our spectra fall in

principal component analysis
(PCA).

between the two extremes outlined
above: they contain enough
information to cluster sample types

Clustering of the full dataset using
but there is also measurable variation

the first two principal components.
within the different sample types (i.e.,
beer, chilis, and algae). This

encouraged us to explore the nuances of spectral data within sample types.

We were interested to see how a classifier might perform when applied to our spectra.
Specifically, we created linear classifiers predicting each sample type from spectra via
linear discriminant analysis (LDA). We found that, in each case, the first two linear
discriminants grouped technical replicates together. Individual beer samples did
cluster approximately according to their alcohol content — the three highest-ABV
beers clustered together, including Dark Majik at 11%, Sneaky AF at 10%, and Big Love
at 9% (Figure 4, A). Interestingly, though two of these three are IPAs, similar-style beers
like a second Hazy Double IPA did not join this cluster. We also found that three of the
lighter-style beers with lower alcohol content clustered together, including the Kolsch
Kolchstastic at 5.2%, the lager Helles (Long Nights Edition) at 4.9%, and the light lager
Party Wave at 4.2% (Figure 4, A). The key exception was the pilsner, Temescal Pils

(5.0%), which did not cluster with the other lighter-style, low-alcohol beers. Instead, the



pilsner joined the
third cluster, which
includes beers with
an intermediate ABV
(Figure 4, A). The
chili seed samples
tended to be sorted
by color of the chili
on LD1, with the red
chilis and the various
dried chilis to the left
and the green chilis
to the right (Figure 4,
B). Across samples,
one of the dominant
signals was pigment
fluorescence,
including chlorophyll
and carotenoids.
This held true even
for chili seeds.
Finally, we found that
each algal sample
clustered
independently,
demonstrating that
the cross between
Chlamydomonas
reinhardtii and
Chlamydomonas
smithii resulted in
unique progeny that
are differentiable
from either parent
(Figure 4, C). This
suggests that the
genetic and
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Beers (ordered by ABV)

Dark Maijik (11.8%)
Sneaky AF (10.6%)
Big Love (9.0%)
Gnomes ... (8.1%)
Otto’s Jacket (7.8%)
Kimchi Sour (6.6%)
Love (6.1%)

Colour Me ... (6.0%)
Hunky Jesus (5.5%)
Kolschtastic (5.2%)
Temescal Pils (5.0%)
Helles (4.9%)

... Irish Jesus (4.7%)
Party Wave (4.2%)

Chilis
(ordered by Scoville units)
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Orange hab. (250,086)
Red Thai(110,000)
Green Thai (75,080)
Indian long (62,568)
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Algae

]

C. reinhardtii
(cc124)

C. smithii
(cc1373)

Parent
species

1316
13f5
13f4
1313

Hybrids

1. galbana
(UTEX987)

Distant
relative

Spectral clustering of samples via linear

discriminant analysis (LDA).



resultant 2D clustering within LDA space for (A) beers, (B) chilis,
physiological and and (C) algae.

chemical differences

between these

unique hybrid strains are captured in Raman spectra. These spectra can be used as
high-dimensional phenotypes to differentiate both species and strains and potentially
improve genotype-to-phenotype mappings [1].

Specific regions of the spectra correlate with
quantitative features of the samples

Our clustering results show that these Raman spectra contain sufficient information to
identify individual biological samples, suggesting they might also contain information
about quantitative features that varied across those same samples. To test this
possibility, we identified spectral regions that significantly capture information about
beer alcohol content (ABV) and the perceived heat of a chili (Scoville units). We did not
analyze quantitative traits for algae because we tested fewer individual samples (i.e.,
strains) than we did for chilis and beer. For both ABV (Figure 5) and Scoville units
(Figure 6), we conducted a LASSO, a regularized form of regression, where intensities
at individual spectral positions were independent variables and the quantitative trait
was the dependent variable. We chose LASSO because it is effective in cases where
only very few of the model parameters (intensity at individual pixels in the spectra)
influence the response variable, something we expect to be true for these data. We
optimized our model for the prediction of “test” data not used during training.
Therefore, significant spectral features are predictive of the particular quantitative trait.
We determined the significance of each spectral position by permutation test (see
“Data analysis” for details).
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Figure 5

Local importance and contribution of Raman spectrain
predicting alcohol content (ABV) of beers, as inferred using
LASSO regression.

(A) Each line shows the mean spectrum for a specific beer. The
color of the line corresponds to the ABV for each beer.

(B) Each point corresponds to a single pixel along the spectrum,
and its position along the y-axis corresponds to how strongly
spectral intensity at that position predicts ABV. Positive coefficients
indicate spectral positions that positively predict ABV, whereas
those with negative coefficients negatively predict ABV. The size of
points corresponds to the percentage of bootstrap replicates (n =
5,000) in which that spectral position was retained by L1
regularization (LASSO) regression; vertical lines associated with
each circle indicate the 95% confidence intervals for each inferred
coefficient. Points in orange are those for which the bootstrapped
95% confidence intervals are non-overlapping with zero.



Our analysis of beer samples identified several regions of Raman spectra that
significantly predict ABV (Figure 5, bootstrapped confidence intervals, p < 0.05).
Although the LASSO regression treats each spectral position as independent of the
others, the spectral positions with significant coefficients appear (qualitatively) to
cluster in spectral space, though we did not formally test this. For instance, the major
peaks in spectral intensity for lower-ABV beers are often flanked by spectral positions
with significant coefficients (Figure 5, B). There are apparent clusters of significant
coefficients at these positions, where the intensity of Raman signal begins to shift.
Thus, we can use these spectra to identify features that significantly predict the ABV of
asample.

Across the chili seed samples, chlorophyll fluorescence drove much of the variation
(Figure 6, A, pixels 1,200-1,440). Despite this, we identified spectral regions that
predict perceived heat (Figure 6, B; bootstrapped confidence intervals, p < 0.05). The

regression coefficients for spectral regions with variation driven by chlorophyll or
carotenoid fluorescence (Figure 6, B; pixels 1,200-1,440) are much smaller than
coefficients for other sections of the spectra. This pattern could indicate that
chemicals causing Raman shifts in this spectral range contribute less to a pepper’s
perceived heat than chemicals causing Raman shifts in other spectral ranges.
Alternatively, it could be that the strong chlorophyll or carotenoid fluorescence reduces
our ability to estimate the contribution of truly meaningful features. A less exploratory
study would benefit from more rigorous control of this confounder. One could explore
this further by comparing the spectral data from seeds to flesh and isolating the
spectral contribution of the pigment (chlorophyll and carotenoids). Though not
presented here, our data from the analysis of chili flesh samples are also available in

our GitHub repository.



https://github.com/Arcadia-Science/2024-disco-raman-hackathon/tree/v1.0/data/peppers_flesh
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Figure 6

Local importance and contribution of Raman spectrain
predicting perceived heat of peppers (logio-transformed

Scoville units), as inferred using LASSO regression.

(A) Each line shows the mean spectrum for a specific chili seed
sample. The color of the line corresponds to the log-transformed
Scoville units for each chili pepper.

(B) Each point corresponds to a single pixel along the spectra, and
its position along the y-axis corresponds to how strongly spectral
intensity at that position predicts perceived heat. Positive
coefficients indicate spectral positions that positively predict
perceived heat, whereas those with negative coefficients negatively
predict perceived heat. Size of points corresponds to the
percentage of bootstrap replicates (n = 5,000) in which that
spectral position was retained by L2 regularization (LASSO
regression); vertical lines associated with each circle indicate the
95% confidence intervals for each inferred coefficient. Points in
orange are those for which the bootstrapped 95% confidence
intervals are non-overlapping with zero.



The analyses of both beer and chilis show that these spectra contain information
about quantitative features of these biological samples and we can identify the
components of the spectra that contribute to these features.

Key takeaways

1. Raman spectroscopy yields meaningful data about the chemical composition of
biological samples, and there’s a cheap, quick, easy, and open-source way to build

your own Raman spectrometer (OpenRAMAN).

2. Testing the OpenRAMAN spectrometer on chilis, beer, and algae showed that this
approach is sufficient to classify samples by their spectra and associate them with

quantitative traits.

3. High-dimensional phenotyping through Raman spectroscopy is useful and

accessible.

Next steps

In this pub, we rapidly tested the feasibility of using a tool for our downstream work by
running a hackathon. This hackathon structure was quite useful for constraining a
small project in time and scope and we’ll likely try it again in the future. Because of the
ease of data collection and application of machine learning algorithms, we’ll continue
to leverage Raman spectroscopy, including using the inexpensive OpenRAMAN
spectrometer, as a powerful approach for probing biology. We'd like to help make
Raman spectra from biological samples easier to interpret, so we'd love to hear if there
are any Raman-focused FAIR databases that would be appropriate for these spectra.
We've shared our data in the GitHub repo associated with this pub, but it would be
great to make them more discoverable and contribute to a shared, centralized

resource.


https://www.open-raman.org/
https://www.go-fair.org/fair-principles/
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