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We explored the genetic basis of antimicrobial resistance (AMR)
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is associated with various genetic architectures that span multiple
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Purpose

At Arcadia, we're interested in mapping genotype-phenotype relationships at broader

evolutionary scales than previously attempted. To achieve this, we're developing

models to capture genetic relationships — both linear and nonlinear — that may be

inaccessible to conventional approaches. To further our development, we need a rare

commodity: large-scale data from evolutionarily, genetically, and phenotypically

diverse populations.
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Background and goals
Learning the genotype–phenotype map (i.e., how genotypic diversity translates to

phenotypic diversity) is a fundamental goal in biology with many direct applications. As

the availability of sequencing data has exploded over the past decade, many believed

that genotype–phenotype maps would be resolved across the tree of life. However,

while progress has been made in some cases — e.g., linking large-effect loci with

specific traits — the genetic architecture underlying most phenotypic variation remains

unresolved.

Why is this so? The methods used provide (at least) part of the answer. Most genotype–

phenotype mapping approaches (e.g., genome-wide association studies; GWAS) are

built on a strong assumption: we can explain the breadth of phenotypic variation by

In this pub, we characterize a candidate dataset for model development composed of

globally distributed samples of E. coli. Using exploratory population genomic and

phylogenomic analyses of a previously published dataset of 7,000 E. coli genomes [1],

we describe extensive genetic diversity at both the strain level and among deeply

branching phylogroups. We also verify that this dataset contains high-quality genotypic

information that can be leveraged for model development. Finally, we show we can

uncover the genetic basis of three antimicrobial resistance (AMR) phenotypes using

conventional genomic prediction methods. These analyses expand our understanding

of the evolution of these AMR phenotypes and set the baseline for future non-linear

model development.

This work will interest anyone studying the evolution of antimicrobial resistance or the

links between genotype and phenotype in evolutionary biology, breeding/agriculture, or

genetics.

Data from this pub is available on Zenodo.

All associated code is available in this GitHub repository.

This pub builds on a dataset pub we previously released, “Creating a 7,000-strain E.

coli genotype dataset with antimicrobial resistance phenotypes.”
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simply adding up the contributions of individual genomic loci [2]. However, it has been

known for a long time that additive effects constitute just a portion of possible

genomic interactions. It has also been known that by not capturing nonlinear effects

like epistasis, linear models generally can’t generalize across populations [3]. In these

models, nonlinear effects are averaged over and effectively washed out when

estimating a genetic variant’s phenotypic contribution [2]. Additive models, therefore,

can’t capture the breadth of genetic patterns within populations and are unlikely to

generalize across populations on broader evolutionary scales (where nonlinear

interactions become increasingly prevalent). Given this, decoding genotype–

phenotype maps will remain hard so long as exclusively linear models are used.

Models that capture linear and nonlinear interactions (e.g., autoencoders,

transformers, graph neural networks, etc.) are appealing alternatives. Nonlinear

models may have the flexibility to detect features like epistasis and additive

interactions. In previous work, we found that nonlinear models can predict complex

sets of phenotypes [4] and generalize across quantitative genetic applications [5].

While promising, these efforts were largely theoretical and/or relied on simulated data.

Empirical datasets capturing natural genetic, phenotypic, and evolutionary complexity

are needed to explore the full utility of nonlinear genotype–phenotype models.

We recently published a dataset of 7,000 globally distributed E. coli strains that, for

several reasons, may fit this bill (referred to henceforth here as “E. coli 7k”) [1]. First, E.

coli has independently evolved antimicrobial resistance (AMR) phenotypes multiple

times [6]. Second, E. coli displays substantial genetic variation, including both regular

polymorphisms such as SNPs/short indels, as well as gene presence–absence

variation [7]. Third, the global population of E. coli shows species, population, strain,

and individual-level diversification [8]. These features suggest that this may be a good

“model dataset” for testing nonlinear models that span multiple evolutionary scales.

In this pub, we characterize the extent to which these global features of E. coli diversity

are present in this dataset. We then assess how well linear models predict variation in

AMR phenotypes with diverse evolutionary histories. These analyses flesh out the

utility of this dataset for model development and set a baseline for genomic prediction

accuracy, highlighting diverse opportunities for future development.

SHOW ME THE DATA: Raw genotype and phenotype data used in all analyses is

available on Zenodo (DOI: 10.5281/zenodo.14364732).

https://zenodo.org/records/14364732
https://doi.org/10.5281/zenodo.14364732


The approach
Our goal was to assess the suitability of the previously published E. coli 7k dataset for

genotype-to-phenotype mapping applications. To do this, we first performed some

exploratory population genomic and phylogenetic analyses as both a sanity check on

the genotyping calls and to assess the phylogenetic scope of the dataset. We then

applied standard genomic prediction methods to three AMR phenotypes and analyzed

the results in the context of previously published functional genetic data.

Data preparation and filtering

One caveat of the previously released E. coli 7k dataset is that pangenome reference

genotypes were encoded as missing during genotype calling, meaning we can't

differentiate between missing data and reference allele calls. The vast majority of the

time, missing data should correspond to reference genotypes, so as an

approximation, we assigned all samples with missing genotype calls as reference

genotypes. This approach should be appropriate for most sites but will likely lead to

reference-biased genotyping error in our analyses.

Our dataset is quite large, containing ~2.4 million genetic variants across our 7,000

strains. Although highly information-rich, the size of this dataset can be prohibitive for

exploratory analyses. Furthermore, not all genotypic variants are independent of one

another, whether due to physical proximity/linkage or due to evolutionary non-

independence through patterns of shared ancestry. Thus, to pare down our genotypic

data to a subset of sites suitable for downstream exploratory analyses, we applied

several filtering criteria, constructing two analysis-specific datasets from this subset.

Dataset 1: Population genomic and phylogenetic

analyses

Bacterial genomes can be divided broadly into a “core” genome, shared by all

individuals, and an “accessory” genome that captures presence–absence variation

[9].



Polymorphism found within the core genome of bacterial species is likely to be of high

significance, as these sites are transmitted vertically from generation to generation

and thus reflect phylogenetic and population genomic signals considerably more than

accessory gene content, which can be transmitted horizontally both between and

within bacterial species [9]. Consequently, we first sought to identify which contigs in

our reference pangenome correspond to the core E. coli genome. Looking across the

72 ECOR strains [1][10] used to construct our reference pangenome, we considered

contigs that were present in all samples (i.e., weren't missing in any ECOR strain) to

belong to the core E. coli genome.

We further filtered to retain only bi-allelic sites annotated as synonymous, missense, or

loss of function (LOF) and visualized their respective site frequency spectra (SFS).

These spectra revealed an excess of quadrupleton synonymous sites, suggesting the

persistence of bioinformatic artifacts in our data. More careful investigation revealed

this pattern was driven by 14 samples that possessed an over-enrichment of such

quadrupletons (> 500); we thus removed these samples from our data, resulting in a

more reasonable-looking SFS (Figure 1, A). For all downstream analyses, we focused

exclusively on synonymous sites that had passed all filtering criteria thus far. To

improve the computational efficiency of downstream analyses, we randomly retained

10% of genotypes with a minimum derived minor allele count (hereafter MAC) of 10,

leaving us with a total of 13,352 synonymous sites for population genomic and

phylogenetic analyses.

Population genomics

To explore broad patterns of genetic similarity in our dataset, we conducted a principal

component analysis (PCA) using our filtered genotypic data as implemented in the R

package SNPRelate (v1.36) [11]. We explored how various sample metadata features

such as country of isolation, year of isolation, and multilocus sequence type (MLST)

mapped onto the first five PC axes using multinomial logistic regression using the R

package nnet (v7.3-19) [12].



Phylogenetic inference

We inferred a strain-level phylogeny using IQ-TREE 2 (v2.3.5) [13], using a general time

reversible substitution model with unequal rates and base frequencies (GTR). We also

applied an ascertainment bias correction (+ASC [14]) to adjust branch length

estimates from SNP data. Motivated by the findings of our genomic prediction

analyses (see below), we applied the same procedure for constructing a gyrA gene

tree in downstream analyses. For this analysis, we simply restricted the inference to all

polymorphic sites found on the contig mapping to this gene.

Dataset 2: Genomic prediction

Next, we sought to construct a genotypic dataset suited to the task of genomic

prediction, starting from the complete genome. We removed excessively rare variants

for these analyses as most models will have very little statistical power to estimate the

effects for such polymorphism. We thus first filtered to retain sites with non-reference

alleles that occurred at appreciable frequency (derived MAC ≥ 250), leading to the

retention of 326,625 markers for genomic prediction in 7,043 samples (we again

excluded the 14 individuals identified as outliers earlier). We chose not to prune our

sites for linkage disequilibrium (LD, the statistical association between alleles in a

population). Instead, we used models that induce sparsity in marker effect estimates

through regularization using a Bayesian prior for marker effect sizes, thus allowing

genotype-to-phenotype associations to drive marker selection rather than random

sampling.

We also chose not to focus our analyses solely on bi-allelic markers as this can lead to

the exclusion of important multi-allelic polymorphisms in the genome, especially in

large datasets such as ours [15]. Furthermore, previous work has shown that

presence/absence variation in the accessory genome can also play important roles in

AMR evolution through genetic mechanisms such as plasmid exchange or

transposon-mediated resistance [16]. Consequently, we also included a set of markers

tracking presence/absence status for all 32,441 pangenome contigs and all 7,043

individuals in our analysis.

To genotype individuals for contig presence/absence status, we used SAMtools (v1.20)

idxtstats  [17] to calculate the number of reads mapping to each contig in each

sample. We then normalized these counts by the contig length and total number of



reads mapped to the pangenome in each sample. We then chose 12 random ECOR

strains and visualized their distributions of normalized coverage. Based on these plots,

we chose a normalized coverage cutoff of 1e  that separated the two distinct

distributions of coverage (one for present contigs and one for absent contigs) that

were apparent. We combined SNP/indel marker data and presence/absence pseudo-

marker data using PLINK (v1.90b6.21) [18], creating a merged output file we used in

downstream genomic prediction analyses.

Genomic prediction

We used Bayesian sparse linear mixed models (BSLMM) [19] to perform genomic

prediction as implemented in GEMMA (v0.98) [20]. We selected the BSLMM model as

it allows markers to draw effect sizes from two distributions: a distribution for minor

effects (such as those often associated with quantitative traits) and a distribution of

much rarer major effect markers. We assumed a priori that this combination of

distributions should be appropriate for the AMR phenotypes we're modeling, given that

individual substitutions or alleles are often major determinants of resistance [16].

To fit the model, we first calculated a centered relatedness matrix based on our set of

markers. Then, independently, we ran a probit version of the BSLMM model for each

AMR phenotype. Strictly speaking, our phenotypes are encoded in three levels

(susceptible, intermediate, and resistant). Susceptible was the most common state for

almost all phenotypes, with a subset of individuals being resistant and a very small

fraction labeled intermediate. Given the rarity of susceptible samples and that

resistant/intermediate phenotypes likely share genetic features that lead to any level

of resistance, we coerced our phenotypes to a binary state as required for a probit

model, encoding all intermediate individuals as resistant (coding 0=susceptible,

1=intermediate/resistant). As in previous analyses, we assumed that all missing

genotypes were, in fact, masked reference alleles. We left all other parameters as their

defaults. Fitted BSLMMs return posterior mean estimates for marker effect size

parameters, including alpha (corresponding to a minor effect estimate), beta (a major

effect estimate), and gamma (a parameter estimating the probability that beta is non-

null). We estimated overall marker effects as α + β*γ, as suggested in the GEMMA

manual, sorting markers based on the absolute value of this estimate of total effect.

-10

https://www.xzlab.org/software/GEMMAmanual.pdf
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Additional analyses

To look for evidence of physical linkage between candidate resistance markers, we

calculated a measure of covariance in allelic state, LD. To do this, we used PLINK

(v1.90b6.21) [18] and calculated all vs. all LD between our top ten largest-effect

markers for all phenotypes (separately for each phenotype), using options --r2 --

allow-extra-chr --ld-window-r2 0  to calculate all vs. all inter-chromosome r2.

Our genomic prediction analyses revealed that ciprofloxacin resistance was chiefly

driven by three tightly linked resistance mutations, which likely evolved independently

several times across our phylogeny. We, therefore, also used corHMM (v2.8) [21] to try

and tease apart the most likely/frequent order in which these three mutations arose

during ciprofloxacin resistance evolution in our dataset. Using hidden Markov models

to infer transition rates between discrete states (here, genotypic state at three

resistance sites) along branches of a phylogeny, corHMM constructs models wherein

unsampled (“hidden”) states are codistributed alongside the sampled state. These

hidden states allow the model to capture more biologically realistic rate variation

across the phylogeny.

We first time-calibrated the phylogeny we inferred from genome-wide SNP data using

the least squares dating method for tip-dating [22] implemented in IQ-TREE using

year of isolation metadata associated with our samples as time reference points. To

estimate hidden state transition rates, we modeled the reference and alternate alleles

as a binary phenotype for all three mutational positions (gyrA248, gyrA259, and

parC239). We fit a model using default corHMM options with asymmetrical transition

rates and a single hidden rate category (i.e., each transition is modeled using a single

rate). We limit our interpretations of resistance evolution to forward single-step

mutations estimated by corHMM as this is the most biologically plausible path of

resistance evolution, barring rare double mutation events for which our dataset likely

lacks the necessary resolution to capture.

Additional methods

We used Grammarly Business to reorganize text using a template, reformat text

according to a style guide, and help clarify and streamline the text that we wrote.



All code generated and used for the pub is available in this GitHub repository

(DOI: 10.5281/zenodo.14941875).

The results

SHOW ME THE DATA: Raw genotype and phenotype data used in all analyses is

available on Zenodo.

Population genomic patterns

The E. coli 7k dataset is genomically and phenotypically diverse. To facilitate

downstream model development, we were interested in characterizing any technical

(e.g., sequencing noise or bioinformatic errors) or biological (e.g., sampling imbalances

or genetic complexity) factors that might limit its utility. To this end, we performed a

series of population genomic and phylogenetic analyses to determine which patterns

in the data reflected expected biological processes and which were the product of

technical and/or biological artifacts.

First, we looked for evidence of genome-wide purifying selection, an expected

population genetic phenomenon in real-world populations. Purifying selection

removes deleterious mutations from a population, meaning that more deleterious

mutations should, on average, segregate at lower allele frequencies than less

deleterious ones. This results in a left-shifted and rapidly decaying site frequency

spectrum (SFS). Deviations from this pattern can indicate technical/bioinformatic error.

Population genomic datasets lacking signals of purifying selection may be corrupted

by technical artifacts (e.g., sequencing or bioinformatic issues).

We compared the (unfolded) SFS of three types of mutations: 1) synonymous (low to no

effect), 2) missense (moderate effect), and 3) loss-of-function (LOF; large effect). As

expected, rare allele frequency increased with mutational effect, indicating that

purifying selection has acted to remove more common deleterious mutations in E. coli

(Figure 1, A). Moreover, the SFS of all types of mutations decays roughly monotonically

https://github.com/Arcadia-Science/long_time_e_coli_experiment/tree/V1.0
https://doi.org/10.5281/zenodo.14941875
https://zenodo.org/records/14364732


with allele frequency, another expected biological signal. Most mutations in a

population aren't expected to reach high frequencies due to random sampling. These

results, therefore, rule out allele frequency imbalances due to technical errors.

Patterns of SNP and presence–absence diversity in E. coli.

(A) Site frequency spectra of loss-of-function (LOF; purple), missense

(yellow), and synonymous (green) mutations. Allele count represents the

number of non-reference alleles present in the dataset for each

mutation type.

(B) Distribution of contig presence–absence variation. The x-axis

captures how many of 7,043 samples had a contig labeled as ‘present’

based on a normalized coverage cutoff threshold.

Next, we turned our attention to patterns of sequencing coverage in our dataset, which

can also be informative about technical artifacts. E. coli strains possess a ‘core

genome’ (a set of genes broadly shared by all taxa) and an “accessory genome” (genes

that vary across taxa, strain/phylogroup/etc.), the structure of which can vary broadly.

By analyzing the relative coverage of DNA segments (contigs) across the 7,000

genomes, we can reconstruct the presence of the core and accessory genomes in the

dataset and compare these patterns to previously published work on the structure of

the E. coli genome. Of 32,441 contigs, we found 2,847 were shared by all 7,043

samples, 687 were shared by all but one, and 287 were shared by all but two samples,

thus reflecting a broadly shared core genome. On the other hand, many contigs were

shared by a small subset of samples in the dataset (Figure 1, B), highlighting the

Figure 1



accessory genome. These patterns align with previous estimates of the E. coli core

genome size and presence–absence frequency. These observations further indicate

that the E. coli 7k data and reference pan-genome are of high quality [7][23].

Finally, we examined genome-wide patterns in the dataset to see if we identified

expected E. coli population-level differences. A genomic PCA showed that genomes

were broadly differentiated along axes defined by the 72 ECOR reference strains used

to assemble the pangenome (Figure 2, A, Supplemental Table 1). Notably, there was

little association between genomic diversity (represented by PC axes 1–5) and year of

collection (pseudo r  = 0.05; multinomial regression; Figure 2, B). There was a similarly

weak relationship between these genomic principal components and country of

isolation (pseudo r  = 0.25; Figure 2, C). This tracks with previous work that has found

phylogenetically distinct strains of E. coli co-localizing globally [24][25], a pattern

which likely obscures more subtle within lineage isolation by distance patterns.

However, multilocus sequencing type (MLST) — a commonly used taxonomic identifier

of E. coli lineages — and broader phylogroup labels were strongly associated with

genomic diversity (pseudo r  = 0.86; Figure 2, C). Furthermore, combining

MLST/phylogroup with genomic diversity (PCs 1–5) strongly predicted the country of

isolation (linear regression; pseudo r  = 0.89). This indicates that broad-scale

population differences (i.e., MLST/phylogroup) co-occur with more recent, finer-scale

geographic variation (i.e., country of origin). These results indicate that the E. coli 7k

dataset represents various evolutionary scales and patterns.

2

2

2

2

https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_1_PCA_multinomial_regression.pdf


PCA of 7,000 E. coli genotypes with visualization of

various metadata features.

(A) Labeling of samples included in the construction of

the pan-genome reference.

(B) Labeling of samples by year of isolation.

(C) Labeling of samples by either broader phylogroup

or multilocus sequence type (MLST). MLST labels are

nested under the broader phylogroup to which they

belong.

Figure 2



Phylogenetic analysis

To further interrogate these patterns, we inferred a core-genome phylogeny and

analyzed the distribution of major phylogroups and MLSTs (Figure 3, A). As expected,

MLSTs formed clades nested within deeply branching phylogroups (Figure 3, A). For

example, MLST 131 is a sub-lineage of phylogroup B2 and correctly appears as such in

our phylogeny [26]. We did note that some samples labeled as phylogroup F appeared

within phylogroup D (Figure 3, A). These samples lack signals of phylogenetic (e.g.,

excessively long branch lengths) or bioinformatic error (unexpected SFS patterns),

suggesting that they're incorrectly labeled phylogroup F in the metadata. Overall, the

phylogenetic patterns match previous work and recover expected relationships both

within strains and among major phylogroups [8].

We next used the phylogeny to infer how the three AMR phenotypes (ampicillin,

trimethoprim/sulfamethoxazole, ciprofloxacin) have diversified over time (Figure 3, B).

We wanted to know if these phenotypes have followed the same pattern or if they

represent different diversification modes. The answer would help us gauge how much

power the E. coli 7k dataset contains for modeling genotype–phenotype relationships

over different evolutionary scales.

Ampicillin and trimethoprim/sulfamethoxazole resistance were fairly evenly distributed

across the tree (Figure 3, B). On the other hand, ciprofloxacin was restricted to specific

clades, potentially representing multiple independent transitions between antibiotic

susceptibility and resistance (Figure 3, B). Of the 433 unique clade labels (MLST or

broader phylogroups) in our dataset, only 70 (16%) contained at least one resistant

ciprofloxacin observation. Ampicillin and trimethoprim/sulfamethoxazole were more

broadly distributed: 165/112 (38%/26%) clades contained at least one observation,

respectively. These observations suggest two types of phenotypic distribution in the

dataset: broad (ampicillin, trimethoprim/sulfamethoxazole) and clade-restricted

(ciprofloxacin).

The two diversification types may be associated with different genetic architectures.

For example, closely related strains exhibit different AMR phenotypes in the broad

distribution, suggesting that just a few mutations may be needed to evolve resistance.

Encouragingly, this type of recurrent diversification helps control for population

differences, allowing causal loci to be decoupled from the genomic background. On

the other hand, the putatively independent, repeated evolutionary origins of

ciprofloxacin resistance may point to a common mutational pathway through which



Species tree constructed from sub-

sampled synonymous sites (minor-allele

count: MAC > 10) in the core genome.

(A) Species tree constructed from sub-

sampled synonymous sites (minor-allele

count: MAC > 10) with Phylogroup/MLST

labels, only groups with at least 100 samples

shown.

(B) Species tree constructed from sub-

sampled synonymous sites (MAC > 10) with

three focal AMR phenotypes and their state

distributions.

this trait has evolved among distinct E. coli strains. We thus sought to identify which

loci contribute to AMR's evolution and the extent to which these contributions persist

across evolutionary scales.

Figure 3



Genomic prediction overview

In the previous sections, we found that the E. coli 7k dataset has several desirable

features for downstream model development. The dataset lacks clear evidence of

technical and biological noise, encompasses a substantial portion of E. coli’s global

diversity, and contains genomic and phenotypic diversity spanning multiple

evolutionary scales. Given these positive signs, we were next interested in probing the

genetic architectures of three AMR phenotypes.

Using linear genomic prediction methods, we inferred the size, structure, magnitude,

and heritability of AMR-associated genetic markers (Figure 4). As previously

discussed, these methods often fail to capture nonlinear processes like epistasis.

However, by estimating how much phenotypic variation can be explained solely by

additive interactions, linear models can be useful for establishing a predictive baseline.

For example, all three phenotypes had very high estimates of narrow sense heritability

(proportion of variance explained: 0.99, 0.95, 0.94 for ciprofloxacin, ampicillin, and

trimethoprim/sulfamethoxazole resistance, respectively), indicating that these traits

have relatively simple genetic architectures that might allow genomic prediction

models to capture a majority of their phenotypic variance.

This section provides an in-depth exploration of these genomic prediction results.

Please jump to the Key takeaways and Next steps for a quicker overview.



Effect size distribution for the ten largest-effect markers from a genomic

prediction analysis on three AMR phenotypes.

Effect size is measured as the sum of minor and major effects estimated by

GEMMA’s BSLMM model. Markers are labeled as either SNP or presence–

absence variation.

Ciprofloxacin resistance

The three markers with the largest effect sizes strongly predicted ciprofloxacin

resistance. These markers were two missense SNPs in the gyrA gene (gyrA248,

gyrA259 leading to substitutions Ser83Leu, Asp87Asn/His/Tyr respectively), and one

missense SNP in the topoisomerase IV subunit A (ParC239, substitution Ser80Ile)

(Figure 4, Supplemental Table 2). All three substitutions have been previously identified

as resistance mutations in lab studies [27] and likely underlie the vast majority of

ciprofloxacin resistance in our dataset. We constructed a gene tree based on gyrA and

mapped the occurrence of all three resistance markers onto it to check if these

substitutions have evolved independently more than once. The distribution of the

resistance phenotype on this gene tree suggests a dynamic evolutionary history, with

resistance to ciprofloxacin being repeatedly gained and/or lost through mutation in the

core genome (Figure 5, A).

As we're ultimately interested in nonlinear genotype–phenotype modeling, we looked

further into possible interactions between the three key ciprofloxacin resistance

Figure 4

https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_2_genomic_prediction_top10_hits.pdf


substitutions, given their multiple independent origins and abundance in our dataset.

To test for first-order interactions between the three substitutions, we fit a logistic

regression predicting resistance phenotype using individual marker-state and all

pairwise (N = 9) marker interaction terms possible (Supplemental Table 3). For the

singular marker terms, the logistic regression recapitulated the effect size ranking of

our initial analysis [gyrA248 (effect size = 3.24) > gyrA259 (2.64) > parC239 (2.11)].

None of the interaction terms significantly differed from 0 in the fitted model, likely due

to the low number of observations of intermediate genotypes. However, the model did

predict a positive (albeit insignificant) interaction between gyrA248 and gyrA259(p =

0.12, effect size = 2.29), a finding that's supported by observations of ciprofloxacin

resistance in the lab [27], and by plotting resistance phenotype distributions by

genotype (Figure 5, B).

While the tight associations between the resistance markers for ciprofloxacin hamper

model fitting, they are in themselves informative since an overabundance of certain

combinations (i.e., LD) implies they're more fit than others. Consequently, we expect

that mutational trajectories from non-resistant wild-type genotypes to antibiotic-

resistant genotypes should disproportionately pass through these favorable genotypic

combinations, avoiding unfit genotypes. To test these predictions, we fit models of

discrete trait evolution to infer transition rates between different genotypes, thus

obtaining estimates of the relative probabilities of different mutational trajectories

between ciprofloxacin susceptible/resistant strains. We accomplished this using

corHMM(v2.8) [21] to estimate all possible single-step transition rates between the

presumed ancestral state (the reference allele at all three positions) to the final full

mutation stack resistance phenotype.

This analysis suggested high reverse mutation rates, particularly in mutational states

involving one or two resistance mutations. This likely occurs because such genotypes

are generally rare in our dataset (and difficult to sample in any dataset of this size) and

distributed within clades with very short internal branch lengths, where the true fine-

scale phylogenetic relationships are hard to estimate. As a result, we limit our focus on

biologically plausible forward, single-step mutational rates estimated in corHMM.

These rates suggest that the most likely single-step mutational pathway toward

resistance first requires a mutation at gyrA248, followed by rapid mutation at either of

the two following sites (Figure 5, C, Supplemental Table 4). This lines up well with the

phenotypic data, as gyrA248 is the only mutation that appears to show some level of

resistance when found alone (Figure 5, B) and is the only mutation that’s found at

https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_3_ciprofloxacin_markers_logistic_regression.pdf
https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_4_corHMM_rates.pdf


Evolutionary history of three major

ciprofloxacin resistance mutations.

(A) Gene tree of gyrA locus with

mutational state at three resistance

SNPs (inner 3 rings: gyrA248, gyrA259,

parC239), as well as ciprofloxacin

resistance phenotype state (outer ring).

Mutational state of 0 denotes ancestral

allele, and mutational state of 1,2,3

appreciable frequency by itself,

further suggesting that it's the

most likely initial mutational step.

Once this mutation arises, it

seems to potentiate ciprofloxacin

resistance evolution as further

accumulation of the next two

mutations achieves full resistance

(Figure 5, B and C).

Overall, our results for genomic

prediction in ciprofloxacin point to

a fairly simple genetic architecture

dominated by a series of three

ordered mutations but reveal more

subtle signatures of epistasis that

are easily missed in our initial

linear genomic prediction analysis.

This provides a nice baseline for

future nonlinear modeling work on

this phenotype. Simultaneously,

however, these results point to the

disadvantage of using natural

datasets. Epistasis naturally

quickly creates LD between

mutations, thereby purging

unfavorable genotypes from a

population [28]. However, this

hampers model fitting, as

unfavorable genotypes (i.e., “true

negatives”) are needed to train

models aiming to connect

phenotype to genotypes. This

highlights the advantage of

studies with controlled crosses

where both fit and unfit genotypes

can be observed and phenotyped.

Figure 5



denote various derived resistance

alleles.

(B) Distribution of ciprofloxacin

resistance phenotypes as a function of

various combinations of

ancestral/derived mutations at three

resistance sites. For simplicity, all

derived alleles are considered

equivalent. Resistance values were

encoded as 0 = susceptible, 0.5 =

intermediate, and 1 = resistant.

(C) Graph of transition rate estimates

between genotypes going from

ancestral state of no resistance

mutations, to full resistance across three

resistance sites. Rates were estimated

using corHMM; only single-step forward

transition rates are illustrated for

interpretability. Width of edges

corresponds to transition rate from the

source (left) to target (right) genotype.

Ampicillin resistance

Unlike ciprofloxacin, ampicillin

resistance was characterized by a

gentler decay of marker effect size

(Figure 4). These resistance

markers mapped to an assortment

of presence–absence loci

corresponding to putative plasmid

and transposon fragments in the

pan-genome (Supplemental Table

2). The marker with the largest

effect size in our results is a class

A beta-lactamase (TEM-1)

fragment based on BLASTx hits

(e.g., 74% query cover and 93.3%

sequence identity with an

Enterobacter hormaechei class A

beta-lactamase), a reasonable

resistance locus for ampicillin

resistance [29]. The remaining

markers were enriched for Tn3

transposon family components

(Supplemental Table 2). Such

transposons often harbor beta-lactam genes associated with resistance evolution

[16].

Most markers associated with ampicillin resistance in our dataset appear to map to

genomic components that are likely physically linked to causal resistance loci (such as

beta-lactams) rather than resistance loci themselves, a consequence of the

fragmented pan-genome we're using. To overcome this limitation, we looked at

patterns of LD between our ten largest-effect markers to see if we could find evidence

of linkage among them. We found clear signals of enriched LD among the six markers

with the largest effect size, especially the largest-effect marker, a beta-lactam gene,

and the marker with the third-largest effect size, a Tn3 transposon fragment (Figure 6).

The observation of moderate/high but not near perfect (> 0.9 r ) LD among these2
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Pairwise linkage disequilibrium

(r ) among the ten largest-effect

ampicillin resistance markers.

markers likely reflects complex

patterns of physical linkage between

them whereby they’re likely linked in

some parts of the phylogeny but not in

others.

Our results point to a distinct genetic

architecture for ampicillin resistance

that involves the acquisition of any of

a variety of accessory genome

components rather than specific core

genome mutations, as in the case of

ciprofloxacin resistance. While our

analysis only captures one previously

validated causal resistance locus, we

can still conclude that ampicillin

resistance generally arises via

plasmid​​ and transposon resistance

locus acquisition in our dataset, a

finding corroborated by previous

research on the occurrence of resistant beta-lactam genes [30].

Trimethoprim/sulfamethoxazole resistance

Markers of varying effect sizes characterized trimethoprim/sulfamethoxazole

resistance (Figure 4). Similar to the case of ciprofloxacin, one marker had a particularly

large effect size (the largest in any of our genomic-prediction analyses). The top ten

largest-effect markers were a mixture of SNPs and presence–absence markers (six

and four markers, respectively, a pattern that is intermediate to the results for

ciprofloxacin and ampicillin (Supplemental Table 2).

Our list of the top ten largest-effect markers seemed to be enriched for AadA

(aminoglycoside adenylyltransferase) and GNAT (GCN5-related N-acetyltransferases)

family proteins. The marker with the largest effect size is a SNP located on a short

contig (160 bp), which has multiple significant BLASTx hits to AadA family proteins (e.g.,

99% query cover and 100% sequence identity to an AadA in Pseudomonas gessardii)

in addition to hits to partial nucleotidyltransferase domain-containing proteins. This

Figure 6

2
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wasn't the only association with AadA proteins that we found. The marker with the

second-largest effect size (a SNP) also had significant BLASTx hits to AadA1/ANT(3”)

(99% query cover and 100% sequence identity to AadA1 in E. coli). Finally, the marker

with the fourth-largest effect size (a presence–absence marker) had significant

BLASTx hits to a GNAT family protein (80% query cover and 86% sequence identity to

a Klebsiella pneumoniae putative aminoglycoside N(6')-acetyltransferase (AAC(6”)).

Functionally, this enrichment for AadA and GNAT family proteins is perplexing. While

these protein families do indeed play crucial roles in antibiotic resistance, their

mechanism of action is the enzymatic modification of aminoglycoside family

antibiotics, which doesn't include either trimethoprim or sulfamethoxazole [31]. The

association between trimethoprim/sulfamethoxazole resistance and the largest-effect

marker was particularly strong and statistically robust. We considered the possibility

that the phenotypic data was mislabelled, checking both the source of the data (BV-

BRC) and the underlying studies [32], but we found no evidence of phenotype data

errors. We also didn’t find a strong phenotypic correlation between

trimethoprim/sulfamethoxazole and aminoglycoside antibiotics like gentamycin (r  =

0.20) in our dataset.

While our genomic prediction analyses did a good job predicting

trimethoprim/sulfamethoxazole resistance, we couldn't link the largest-effect markers

to putative resistance loci. We suspect this is chiefly driven by the fragmented nature

of the pan-genome we use for this dataset. As resistance is often acquired through

plasmids/transposons [16][33], and such contigs are poorly assembled in our

pangenome, we might struggle to find candidate resistance loci among these

fragments. It could well be that an unassembled causal resistant dfrA locus [34] is

linked to the largest effect aadA gene we observe as predictive of

trimethoprim/sulfamethoxazole resistance, leading to our confusing results. This isn't

an unlikely hypothesis given the fact that resistance genes for multiple different types

of antibiotics are known to be stacked within single plasmids/transposon [33]. This

result implies that while we likely can predict most AMR phenotypes very well with both

linear and nonlinear models in this dataset, the interpretability of findings may be

challenging in some instances.

Key takeaways
We performed exploratory analyses in the recently published E. coli 7k dataset

2



The E. coli 7k dataset captures the global genomic diversity of E. coli and captures

both fine- and broad-scale diversity across evolutionary scales

Genomic prediction analyses identified expected causal AMR loci for ciprofloxacin

and ampicillin but no interpretable genomic resistance targets for

trimethoprim/sulfamethoxazole

Follow-up analyses demonstrate that while the overall genetic architecture of

resistance is often simple, it nonetheless can be dependent on more subtle

epistatic interactions

Next steps
Dataset availability currently limits the creation of realistic genetic models that can

account for linear and nonlinear phenomena. In this pub, we stress-tested the E. coli 7k

dataset for such modeling applications.

The E. coli 7k dataset lacks common biological and technical error signals. For

example, we detected purifying selection, a stable core genome, and isolation by

distance in genetic similarity among samples. Phylogenetic analyses indicated the

presence of diverse evolutionary scales: deeply branching phylogroups and rapidly

diversifying strains. Antibiotic resistance has evolved in multiple ways across this tree,

displaying both broad and clade-restricted distributions. Together, these results

provide confidence in the quality of the E. coli 7k dataset and confirm its suitability for

model development.

Linear genomic prediction methods were able to confidently predict AMR phenotypes.

However, the interpretability of these results varied. For example, we identified three

epistatic mutations underlying ciprofloxacin resistance in follow-up analyses.

Ampicillin resistance was also associated with interpretable loci, particularly plasmid

and transposon components likely linked to resistance genes. On the other hand, we

found no obvious link between loci and potential resistance mechanisms for

trimethoprim/sulfamethoxazole. These results provide a suitable baseline for

comparison as more complex models are developed.

We note some outstanding issues. First, the E. coli 7k dataset is centered on a

fragmented pan-genome, which makes it challenging to link genetic markers with AMR

phenotypes functionally. Second, it’s possible that the genomic prediction methods



were underpowered because this is a natural population; selection will have eroded

unfit but informationally rich genotypes that could be uncovered in other contexts.

Overall, our findings set the stage for us to exploit this dataset to guide the use of more

complex nonlinear genomic prediction models. However, it's useful to consider when

and where we expect nonlinear models to provide an edge over linear genomic

prediction models. We hypothesize likely candidates for nonlinear models are

populations in which epistasis or gene-by-environment interactions are prevalent. For

example, the simplest form of epistasis — two-locus interactions — will be most

powerful in populations with intermediate (~0.5) allele frequencies [2]. This

requirement is most likely to be met in highly structured populations — especially

products of artificial crosses or selection — or where mutations are fixed between

evolutionarily diverged lineages [35][36]. Gene-by-environment interactions are more

complicated to predict and are likely implicated in complex, highly polygenic traits

sensitive to environmental conditions (e.g., agronomic yield [37]). Datasets in which

phenotypes were measured in the field are likely candidates for approaching gene-by-

environment signals. It'll be useful to continue developing intuitions for which model

architectures will best capture these various processes of diversification, pushing our

ability to extract inference in contexts where our knowledge of the genotype–

phenotype map is much less understood.
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