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Predicting antimicrobial
resistance phenotypes
across 7,000 E. coli
genomes

We explored the genetic basis of antimicrobial resistance (AMR)
phenotypes among 7,000 globally distributed strains of E. coli. AMR
is associated with various genetic architectures that span multiple
evolutionary scales.
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Purpose

At Arcadia, we're interested in mapping genotype-phenotype relationships at broader
evolutionary scales than previously attempted. To achieve this, we're developing
models to capture genetic relationships — both linear and nonlinear — that may be
inaccessible to conventional approaches. To further our development, we need a rare
commodity: large-scale data from evolutionarily, genetically, and phenotypically
diverse populations.
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In this pub, we characterize a candidate dataset for model development composed of
globally distributed samples of E. coli. Using exploratory population genomic and
phylogenomic analyses of a previously published dataset of 7,000 E. coli genomes [1],
we describe extensive genetic diversity at both the strain level and among deeply
branching phylogroups. We also verify that this dataset contains high-quality genotypic
information that can be leveraged for model development. Finally, we show we can
uncover the genetic basis of three antimicrobial resistance (AMR) phenotypes using
conventional genomic prediction methods. These analyses expand our understanding
of the evolution of these AMR phenotypes and set the baseline for future non-linear
model development.

This work will interest anyone studying the evolution of antimicrobial resistance or the
links between genotype and phenotype in evolutionary biology, breeding/agriculture, or
genetics.

- Data from this pub is available on Zenodo.

. All associated code is available in this GitHub repository.

- This pub builds on a dataset pub we previously released, “Creating a 7000-strain E.

coli genotype dataset with antimicrobial resistance phenotypes.”

Background and goals

Learning the genotype-phenotype map (i.e., how genotypic diversity translates to
phenotypic diversity) is a fundamental goal in biology with many direct applications. As
the availability of sequencing data has exploded over the past decade, many believed
that genotype-phenotype maps would be resolved across the tree of life. However,
while progress has been made in some cases — e.g., linking large-effect loci with
specific traits — the genetic architecture underlying most phenotypic variation remains

unresolved.

Why is this so? The methods used provide (at least) part of the answer. Most genotype-
phenotype mapping approaches (e.g., genome-wide association studies; GWAS) are

built on a strong assumption: we can explain the breadth of phenotypic variation by
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simply adding up the contributions of individual genomic loci [2]. However, it has been
known for a long time that additive effects constitute just a portion of possible
genomic interactions. It has also been known that by not capturing nonlinear effects
like epistasis, linear models generally can’t generalize across populations [3]. In these
models, nonlinear effects are averaged over and effectively washed out when
estimating a genetic variant’s phenotypic contribution [2]. Additive models, therefore,
can’t capture the breadth of genetic patterns within populations and are unlikely to
generalize across populations on broader evolutionary scales (where nonlinear
interactions become increasingly prevalent). Given this, decoding genotype-
phenotype maps will remain hard so long as exclusively linear models are used.

Models that capture linear and nonlinear interactions (e.g., autoencoders,
transformers, graph neural networks, etc.) are appealing alternatives. Nonlinear
models may have the flexibility to detect features like epistasis and additive
interactions. In previous work, we found that nonlinear models can predict complex
sets of phenotypes [4] and generalize across quantitative genetic applications [5].
While promising, these efforts were largely theoretical and/or relied on simulated data.
Empirical datasets capturing natural genetic, phenotypic, and evolutionary complexity
are needed to explore the full utility of nonlinear genotype-phenotype models.

We recently published a dataset of 7,000 globally distributed E. coli strains that, for
several reasons, may fit this bill (referred to henceforth here as “E. coli 7k”) [1]. First, E.
coli has independently evolved antimicrobial resistance (AMR) phenotypes multiple
times [6]. Second, E. coli displays substantial genetic variation, including both regular
polymorphisms such as SNPs/short indels, as well as gene presence-absence
variation [7]. Third, the global population of E. coli shows species, population, strain,
and individual-level diversification [8]. These features suggest that this may be a good
“model dataset” for testing nonlinear models that span multiple evolutionary scales.

In this pub, we characterize the extent to which these global features of E. coli diversity
are present in this dataset. We then assess how well linear models predict variation in
AMR phenotypes with diverse evolutionary histories. These analyses flesh out the
utility of this dataset for model development and set a baseline for genomic prediction

accuracy, highlighting diverse opportunities for future development.

SHOW ME THE DATA: Raw genotype and phenotype data used in all analyses is
available on Zenodo (DOI: 10.5281/zen0do0.14364732).
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The approach

Our goal was to assess the suitability of the previously published E. coli 7k dataset for
genotype-to-phenotype mapping applications. To do this, we first performed some
exploratory population genomic and phylogenetic analyses as both a sanity check on
the genotyping calls and to assess the phylogenetic scope of the dataset. We then
applied standard genomic prediction methods to three AMR phenotypes and analyzed
the results in the context of previously published functional genetic data.

Data preparation and filtering

One caveat of the previously released E. coli 7k dataset is that pangenome reference
genotypes were encoded as missing during genotype calling, meaning we can't
differentiate between missing data and reference allele calls. The vast majority of the
time, missing data should correspond to reference genotypes, so as an
approximation, we assigned all samples with missing genotype calls as reference
genotypes. This approach should be appropriate for most sites but will likely lead to
reference-biased genotyping error in our analyses.

Our dataset is quite large, containing ~2.4 million genetic variants across our 7,000
strains. Although highly information-rich, the size of this dataset can be prohibitive for
exploratory analyses. Furthermore, not all genotypic variants are independent of one
another, whether due to physical proximity/linkage or due to evolutionary non-
independence through patterns of shared ancestry. Thus, to pare down our genotypic
data to a subset of sites suitable for downstream exploratory analyses, we applied

several filtering criteria, constructing two analysis-specific datasets from this subset.

Dataset 1: Population genomic and phylogenetic
analyses

Bacterial genomes can be divided broadly into a “core” genome, shared by all
individuals, and an “accessory” genome that captures presence-absence variation

[°].



Polymorphism found within the core genome of bacterial species is likely to be of high
significance, as these sites are transmitted vertically from generation to generation
and thus reflect phylogenetic and population genomic signals considerably more than
accessory gene content, which can be transmitted horizontally both between and
within bacterial species [9]. Consequently, we first sought to identify which contigs in
our reference pangenome correspond to the core E. coli genome. Looking across the
72 ECOR strains [1][10] used to construct our reference pangenome, we considered
contigs that were present in all samples (i.e., weren't missing in any ECOR strain) to

belong to the core E. coli genome.

We further filtered to retain only bi-allelic sites annotated as synonymous, missense, or
loss of function (LOF) and visualized their respective site frequency spectra (SFS).
These spectra revealed an excess of quadrupleton synonymous sites, suggesting the
persistence of bioinformatic artifacts in our data. More careful investigation revealed
this pattern was driven by 14 samples that possessed an over-enrichment of such
quadrupletons (> 500); we thus removed these samples from our data, resulting in a
more reasonable-looking SFS (Figure 1, A). For all downstream analyses, we focused
exclusively on synonymous sites that had passed all filtering criteria thus far. To
improve the computational efficiency of downstream analyses, we randomly retained
10% of genotypes with a minimum derived minor allele count (hereafter MAC) of 10,
leaving us with a total of 13,352 synonymous sites for population genomic and
phylogenetic analyses.

Population genomics

To explore broad patterns of genetic similarity in our dataset, we conducted a principal
component analysis (PCA) using our filtered genotypic data as implemented in the R
package SNPRelate (v1.36) [11]. We explored how various sample metadata features
such as country of isolation, year of isolation, and multilocus sequence type (MLST)
mapped onto the first five PC axes using multinomial logistic regression using the R
package nnet (v7.3-19) [12].



Phylogenetic inference

We inferred a strain-level phylogeny using IQ-TREE 2 (v2.3.5) [13], using a general time
reversible substitution model with unequal rates and base frequencies (GTR). We also
applied an ascertainment bias correction (+ASC [14]) to adjust branch length
estimates from SNP data. Motivated by the findings of our genomic prediction
analyses (see below), we applied the same procedure for constructing a gyrA gene
tree in downstream analyses. For this analysis, we simply restricted the inference to all
polymorphic sites found on the contig mapping to this gene.

Dataset 2: Genomic prediction

Next, we sought to construct a genotypic dataset suited to the task of genomic
prediction, starting from the complete genome. We removed excessively rare variants
for these analyses as most models will have very little statistical power to estimate the
effects for such polymorphism. We thus first filtered to retain sites with non-reference
alleles that occurred at appreciable frequency (derived MAC = 250), leading to the
retention of 326,625 markers for genomic prediction in 7,043 samples (we again
excluded the 14 individuals identified as outliers earlier). We chose not to prune our
sites for linkage disequilibrium (LD, the statistical association between alleles in a
population). Instead, we used models that induce sparsity in marker effect estimates
through regularization using a Bayesian prior for marker effect sizes, thus allowing
genotype-to-phenotype associations to drive marker selection rather than random
sampling.

We also chose not to focus our analyses solely on bi-allelic markers as this can lead to
the exclusion of important multi-allelic polymorphisms in the genome, especially in
large datasets such as ours [15]. Furthermore, previous work has shown that
presence/absence variation in the accessory genome can also play important roles in
AMR evolution through genetic mechanisms such as plasmid exchange or
transposon-mediated resistance [16]. Consequently, we also included a set of markers
tracking presence/absence status for all 32,441 pangenome contigs and all 7,043
individuals in our analysis.

To genotype individuals for contig presence/absence status, we used SAMtools (v1.20)
idxtstats [17] to calculate the number of reads mapping to each contig in each
sample. We then normalized these counts by the contig length and total number of



reads mapped to the pangenome in each sample. We then chose 12 random ECOR
strains and visualized their distributions of normalized coverage. Based on these plots,
we chose a normalized coverage cutoff of 170 that separated the two distinct
distributions of coverage (one for present contigs and one for absent contigs) that
were apparent. We combined SNP/indel marker data and presence/absence pseudo-
marker data using PLINK (v1.90b6.21) [18], creating a merged output file we used in
downstream genomic prediction analyses.

Genomic prediction

We used Bayesian sparse linear mixed models (BSLMM) [19] to perform genomic
prediction as implemented in GEMMA (v0.98) [20]. We selected the BSLMM model as
it allows markers to draw effect sizes from two distributions: a distribution for minor
effects (such as those often associated with quantitative traits) and a distribution of
much rarer major effect markers. We assumed a priori that this combination of
distributions should be appropriate for the AMR phenotypes we're modeling, given that
individual substitutions or alleles are often major determinants of resistance [16].

To fit the model, we first calculated a centered relatedness matrix based on our set of
markers. Then, independently, we ran a probit version of the BSLMM model for each
AMR phenotype. Strictly speaking, our phenotypes are encoded in three levels
(susceptible, intermediate, and resistant). Susceptible was the most common state for
almost all phenotypes, with a subset of individuals being resistant and a very small
fraction labeled intermediate. Given the rarity of susceptible samples and that
resistant/intermediate phenotypes likely share genetic features that lead to any level
of resistance, we coerced our phenotypes to a binary state as required for a probit
model, encoding all intermediate individuals as resistant (coding O=susceptible,
1=intermediate/resistant). As in previous analyses, we assumed that all missing
genotypes were, in fact, masked reference alleles. We left all other parameters as their
defaults. Fitted BSLMMs return posterior mean estimates for marker effect size
parameters, including alpha (corresponding to a minor effect estimate), beta (a major
effect estimate), and gamma (a parameter estimating the probability that beta is non-
null). We estimated overall marker effects as a + p*y, as suggested in the GEMMA
manual, sorting markers based on the absolute value of this estimate of total effect.


https://www.xzlab.org/software/GEMMAmanual.pdf
https://www.xzlab.org/software/GEMMAmanual.pdf

Additional analyses

To look for evidence of physical linkage between candidate resistance markers, we
calculated a measure of covariance in allelic state, LD. To do this, we used PLINK
(v1.90b6.21) [18] and calculated all vs. all LD between our top ten largest-effect
markers for all phenotypes (separately for each phenotype), using options --r2 --

allow-extra-chr --ld-window-12 © to calculate all vs. all inter-chromosome r2.

Our genomic prediction analyses revealed that ciprofloxacin resistance was chiefly
driven by three tightly linked resistance mutations, which likely evolved independently
several times across our phylogeny. We, therefore, also used corHMM (v2.8) [21] to try
and tease apart the most likely/frequent order in which these three mutations arose
during ciprofloxacin resistance evolution in our dataset. Using hidden Markov models
to infer transition rates between discrete states (here, genotypic state at three
resistance sites) along branches of a phylogeny, corHMM constructs models wherein
unsampled (“hidden”) states are codistributed alongside the sampled state. These
hidden states allow the model to capture more biologically realistic rate variation
across the phylogeny.

We first time-calibrated the phylogeny we inferred from genome-wide SNP data using
the least squares dating method for tip-dating [22] implemented in IQ-TREE using
year of isolation metadata associated with our samples as time reference points. To
estimate hidden state transition rates, we modeled the reference and alternate alleles
as a binary phenotype for all three mutational positions (gyrA248, gyrA259, and
parC239). We fit a model using default corHMM options with asymmetrical transition
rates and a single hidden rate category (i.e., each transition is modeled using a single
rate). We limit our interpretations of resistance evolution to forward single-step
mutations estimated by corHMM as this is the most biologically plausible path of
resistance evolution, barring rare double mutation events for which our dataset likely
lacks the necessary resolution to capture.

Additional methods

We used Grammarly Business to reorganize text using a template, reformat text
according to a style guide, and help clarify and streamline the text that we wrote.



All code generated and used for the pub is available in this GitHub repository
(DOI: 10.5281/zen0d0.14941875).

The results

SHOW ME THE DATA: Raw genotype and phenotype data used in all analyses is
available on Zenodo.

Population genomic patterns

The E. coli 7k dataset is genomically and phenotypically diverse. To facilitate
downstream model development, we were interested in characterizing any technical
(e.g., sequencing noise or bioinformatic errors) or biological (e.g., sampling imbalances
or genetic complexity) factors that might limit its utility. To this end, we performed a
series of population genomic and phylogenetic analyses to determine which patterns
in the data reflected expected biological processes and which were the product of
technical and/or biological artifacts.

First, we looked for evidence of genome-wide purifying selection, an expected
population genetic phenomenon in real-world populations. Purifying selection
removes deleterious mutations from a population, meaning that more deleterious
mutations should, on average, segregate at lower allele frequencies than less
deleterious ones. This results in a left-shifted and rapidly decaying site frequency
spectrum (SFS). Deviations from this pattern can indicate technical/bioinformatic error.
Population genomic datasets lacking signals of purifying selection may be corrupted
by technical artifacts (e.g., sequencing or bioinformatic issues).

We compared the (unfolded) SFS of three types of mutations: 1) synonymous (low to no
effect), 2) missense (moderate effect), and 3) loss-of-function (LOF; large effect). As
expected, rare allele frequency increased with mutational effect, indicating that
purifying selection has acted to remove more common deleterious mutations in E. coli
(Figure 1, A). Moreover, the SFS of all types of mutations decays roughly monotonically
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with allele frequency, another expected biological signal. Most mutations in a
population aren't expected to reach high frequencies due to random sampling. These
results, therefore, rule out allele frequency imbalances due to technical errors.
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Figure 1

Patterns of SNP and presence-absence diversity in E. coli.

(A) Site frequency spectra of loss-of-function (LOF; purple), missense
(vellow), and synonymous (green) mutations. Allele count represents the
number of non-reference alleles present in the dataset for each

mutation type.

(B) Distribution of contig presence-absence variation. The x-axis
captures how many of 7,043 samples had a contig labeled as ‘present’
based on a normalized coverage cutoff threshold.

Next, we turned our attention to patterns of sequencing coverage in our dataset, which
can also be informative about technical artifacts. E. coli strains possess a ‘core
genome’ (a set of genes broadly shared by all taxa) and an “accessory genome” (genes
that vary across taxa, strain/phylogroup/etc.), the structure of which can vary broadly.
By analyzing the relative coverage of DNA segments (contigs) across the 7,000
genomes, we can reconstruct the presence of the core and accessory genomes in the
dataset and compare these patterns to previously published work on the structure of
the E. coli genome. Of 32,441 contigs, we found 2,847 were shared by all 7,043
samples, 687 were shared by all but one, and 287 were shared by all but two samples,
thus reflecting a broadly shared core genome. On the other hand, many contigs were
shared by a small subset of samples in the dataset (Figure 1, B), highlighting the



accessory genome. These patterns align with previous estimates of the E. coli core
genome size and presence-absence frequency. These observations further indicate
that the E. coli 7k data and reference pan-genome are of high quality [7]1[23].

Finally, we examined genome-wide patterns in the dataset to see if we identified
expected E. coli population-level differences. A genomic PCA showed that genomes
were broadly differentiated along axes defined by the 72 ECOR reference strains used
to assemble the pangenome (Eigure 2, A, Supplemental Table 1). Notably, there was

little association between genomic diversity (represented by PC axes 1-5) and year of

collection (pseudo r? = 0.05; multinomial regression; Figure 2, B). There was a similarly

weak relationship between these genomic principal components and country of
isolation (pseudo r? = 0.25; Figure 2, C). This tracks with previous work that has found
phylogenetically distinct strains of E. coli co-localizing globally [24][25], a pattern
which likely obscures more subtle within lineage isolation by distance patterns.

However, multilocus sequencing type (MLST) — a commonly used taxonomic identifier
of E. colilineages — and broader phylogroup labels were strongly associated with
genomic diversity (pseudo r2 = 0.86; Figure 2, C). Furthermore, combining
MLST/phylogroup with genomic diversity (PCs 1-5) strongly predicted the country of
isolation (linear regression; pseudo r? = 0.89). This indicates that broad-scale
population differences (i.e., MLST/phylogroup) co-occur with more recent, finer-scale
geographic variation (i.e., country of origin). These results indicate that the E. coli 7k
dataset represents various evolutionary scales and patterns.


https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_1_PCA_multinomial_regression.pdf
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PCA of 7,000 E. coli genotypes with visualization of

various metadata features.

(A) Labeling of samples included in the construction of
the pan-genome reference.

(B) Labeling of samples by year of isolation.

(C) Labeling of samples by either broader phylogroup
or multilocus sequence type (MLST). MLST labels are
nested under the broader phylogroup to which they
belong.



Phylogenetic analysis

To further interrogate these patterns, we inferred a core-genome phylogeny and
analyzed the distribution of major phylogroups and MLSTs (Figure 3, A). As expected,

MLSTs formed clades nested within deeply branching phylogroups (Figure 3, A). For
example, MLST 131 is a sub-lineage of phylogroup B2 and correctly appears as such in
our phylogeny [26]. We did note that some samples labeled as phylogroup F appeared
within phylogroup D (Figure 3, A). These samples lack signals of phylogenetic (e.g.,
excessively long branch lengths) or bioinformatic error (unexpected SFS patterns),
suggesting that they're incorrectly labeled phylogroup F in the metadata. Overall, the
phylogenetic patterns match previous work and recover expected relationships both
within strains and among major phylogroups [8].

We next used the phylogeny to infer how the three AMR phenotypes (ampicillin,
trimethoprim/sulfamethoxazole, ciprofloxacin) have diversified over time (Figure 3, B).
We wanted to know if these phenotypes have followed the same pattern or if they
represent different diversification modes. The answer would help us gauge how much
power the E. coli 7k dataset contains for modeling genotype-phenotype relationships
over different evolutionary scales.

Ampicillin and trimethoprim/sulfamethoxazole resistance were fairly evenly distributed
across the tree (Figure 3, B). On the other hand, ciprofloxacin was restricted to specific
clades, potentially representing multiple independent transitions between antibiotic
susceptibility and resistance (Figure 3, B). Of the 433 unique clade labels (MLST or
broader phylogroups) in our dataset, only 70 (16%) contained at least one resistant
ciprofloxacin observation. Ampicillin and trimethoprim/sulfamethoxazole were more
broadly distributed: 165/112 (38%/26%) clades contained at least one observation,
respectively. These observations suggest two types of phenotypic distribution in the
dataset: broad (ampicillin, trimethoprim/sulfamethoxazole) and clade-restricted
(ciprofloxacin).

The two diversification types may be associated with different genetic architectures.
For example, closely related strains exhibit different AMR phenotypes in the broad
distribution, suggesting that just a few mutations may be needed to evolve resistance.
Encouragingly, this type of recurrent diversification helps control for population
differences, allowing causal loci to be decoupled from the genomic background. On
the other hand, the putatively independent, repeated evolutionary origins of
ciprofloxacin resistance may point to a common mutational pathway through which



this trait has evolved among distinct E. coli strains. We thus sought to identify which
loci contribute to AMR's evolution and the extent to which these contributions persist
across evolutionary scales.
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Figure 3

Species tree constructed from sub-
sampled synonymous sites (minor-allele
count: MAC > 10) in the core genome.

(A) Species tree constructed from sub-
sampled synonymous sites (minor-allele
count: MAC > 10) with Phylogroup/MLST
labels, only groups with at least 100 samples

shown.

(B) Species tree constructed from sub-
sampled synonymous sites (MAC > 10) with
three focal AMR phenotypes and their state
distributions.



Genomic prediction overview

In the previous sections, we found that the E. coli 7k dataset has several desirable
features for downstream model development. The dataset lacks clear evidence of
technical and biological noise, encompasses a substantial portion of E. coli’s global
diversity, and contains genomic and phenotypic diversity spanning multiple
evolutionary scales. Given these positive signs, we were next interested in probing the
genetic architectures of three AMR phenotypes.

Using linear genomic prediction methods, we inferred the size, structure, magnitude,
and heritability of AMR-associated genetic markers (Figure 4). As previously
discussed, these methods often fail to capture nonlinear processes like epistasis.
However, by estimating how much phenotypic variation can be explained solely by
additive interactions, linear models can be useful for establishing a predictive baseline.
For example, all three phenotypes had very high estimates of narrow sense heritability
(proportion of variance explained: 0.99, 0.95, 0.94 for ciprofloxacin, ampicillin, and
trimethoprim/sulfamethoxazole resistance, respectively), indicating that these traits
have relatively simple genetic architectures that might allow genomic prediction
models to capture a majority of their phenotypic variance.

This section provides an in-depth exploration of these genomic prediction results.
Please jump to the Key takeaways and Next steps for a quicker overview.
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Figure 4

Effect size distribution for the ten largest-effect markers from a genomic
prediction analysis on three AMR phenotypes.

Effect size is measured as the sum of minor and major effects estimated by
GEMMA's BSLMM model. Markers are labeled as either SNP or presence-
absence variation.

Ciprofloxacin resistance

The three markers with the largest effect sizes strongly predicted ciprofloxacin
resistance. These markers were two missense SNPs in the gyrA gene (gyrA248,
gyrA259 leading to substitutions Ser83Leu, Asp87Asn/His/Tyr respectively), and one
missense SNP in the topoisomerase IV subunit A (ParC239, substitution Ser80lle)
(Figure 4, Supplemental Table 2). All three substitutions have been previously identified

as resistance mutations in lab studies [27] and likely underlie the vast majority of
ciprofloxacin resistance in our dataset. We constructed a gene tree based on gyrA and
mapped the occurrence of all three resistance markers onto it to check if these
substitutions have evolved independently more than once. The distribution of the
resistance phenotype on this gene tree suggests a dynamic evolutionary history, with
resistance to ciprofloxacin being repeatedly gained and/or lost through mutation in the
core genome (Figure 5, A).

As we're ultimately interested in nonlinear genotype-phenotype modeling, we looked

further into possible interactions between the three key ciprofloxacin resistance


https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_2_genomic_prediction_top10_hits.pdf

substitutions, given their multiple independent origins and abundance in our dataset.
To test for first-order interactions between the three substitutions, we fit a logistic
regression predicting resistance phenotype using individual marker-state and all

pairwise (N = 9) marker interaction terms possible (Supplemental Table 3). For the

singular marker terms, the logistic regression recapitulated the effect size ranking of
our initial analysis [gyrA248 (effect size = 3.24) > gyrA259 (2.64) > parC239 (2.11)].
None of the interaction terms significantly differed from O in the fitted model, likely due
to the low number of observations of intermediate genotypes. However, the model did
predict a positive (albeit insignificant) interaction between gyrA248 and gyrA259(p =
0.12, effect size = 2.29), a finding that's supported by observations of ciprofloxacin
resistance in the lab [27], and by plotting resistance phenotype distributions by
genotype (Eigure 5, B).

While the tight associations between the resistance markers for ciprofloxacin hamper
model fitting, they are in themselves informative since an overabundance of certain
combinations (i.e., LD) implies they're more fit than others. Consequently, we expect
that mutational trajectories from non-resistant wild-type genotypes to antibiotic-
resistant genotypes should disproportionately pass through these favorable genotypic
combinations, avoiding unfit genotypes. To test these predictions, we fit models of
discrete trait evolution to infer transition rates between different genotypes, thus
obtaining estimates of the relative probabilities of different mutational trajectories
between ciprofloxacin susceptible/resistant strains. We accomplished this using
corHMM(v2.8) [21] to estimate all possible single-step transition rates between the
presumed ancestral state (the reference allele at all three positions) to the final full
mutation stack resistance phenotype.

This analysis suggested high reverse mutation rates, particularly in mutational states
involving one or two resistance mutations. This likely occurs because such genotypes
are generally rare in our dataset (and difficult to sample in any dataset of this size) and
distributed within clades with very short internal branch lengths, where the true fine-
scale phylogenetic relationships are hard to estimate. As a result, we limit our focus on
biologically plausible forward, single-step mutational rates estimated in corHMM.

These rates suggest that the most likely single-step mutational pathway toward
resistance first requires a mutation at gyrA248, followed by rapid mutation at either of
the two following sites (Figure 5, C, Supplemental Table 4). This lines up well with the

phenotypic data, as gyrA248 is the only mutation that appears to show some level of
resistance when found alone (Figure 5, B) and is the only mutation that’s found at


https://github.com/Arcadia-Science/long_time_e_coli_experiment/blob/final_testing/supplemental_tables/Table_3_ciprofloxacin_markers_logistic_regression.pdf
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Figure 5

Evolutionary history of three major
ciprofloxacin resistance mutations.

(A) Gene tree of gyrA locus with
mutational state at three resistance
SNPs (inner 3 rings: gyrA248, gyrA259,
parC239), as well as ciprofloxacin
resistance phenotype state (outer ring).
Mutational state of O denotes ancestral
allele, and mutational state of 1,2,3

appreciable frequency by itself,
further suggesting that it's the
most likely initial mutational step.
Once this mutation arises, it
seems to potentiate ciprofloxacin
resistance evolution as further
accumulation of the next two
mutations achieves full resistance

(Figure 5, B and C).

Overall, our results for genomic
prediction in ciprofloxacin point to
a fairly simple genetic architecture
dominated by a series of three
ordered mutations but reveal more
subtle signatures of epistasis that
are easily missed in our initial
linear genomic prediction analysis.
This provides a nice baseline for
future nonlinear modeling work on
this phenotype. Simultaneously,
however, these results point to the
disadvantage of using natural
datasets. Epistasis naturally
quickly creates LD between
mutations, thereby purging
unfavorable genotypes from a
population [28]. However, this
hampers model fitting, as
unfavorable genotypes (i.e., “true
negatives”) are needed to train
models aiming to connect
phenotype to genotypes. This
highlights the advantage of
studies with controlled crosses
where both fit and unfit genotypes

can be observed and phenotyped.



denote various derived resistance
alleles.

(B) Distribution of ciprofloxacin
resistance phenotypes as a function of
various combinations of
ancestral/derived mutations at three
resistance sites. For simplicity, all
derived alleles are considered
equivalent. Resistance values were
encoded as O = susceptible, 0.5 =
intermediate, and 1 = resistant.

(C) Graph of transition rate estimates
between genotypes going from

Ampicillin resistance

Unlike ciprofloxacin, ampicillin
resistance was characterized by a
gentler decay of marker effect size
(Figure 4). These resistance
markers mapped to an assortment
of presence-absence loci
corresponding to putative plasmid
and transposon fragments in the
pan-genome (Supplemental Table
2). The marker with the largest
effect size in our results is a class
A beta-lactamase (TEM-1)
fragment based on BLASTX hits

ancestral state of no resistance
(e.g., 4% query cover and 93.3%
mutations, to full resistance across three , . ,
sequence identity with an
resistance sites. Rates were estimated ]
. . Enterobacter hormaechei class A
using corHMM; only single-step forward
. . beta-lactamase), a reasonable
transition rates are illustrated for _ .
. N ) resistance locus for ampicillin
interpretability. Width of edges _ o
resistance [29]. The remaining
corresponds to transition rate from the ,
markers were enriched for Tn3
source (left) to target (right) genotype. )
transposon family components

(Supplemental Table 2). Such

transposons often harbor beta-lactam genes associated with resistance evolution

[16].

Most markers associated with ampicillin resistance in our dataset appear to map to
genomic components that are likely physically linked to causal resistance loci (such as
beta-lactams) rather than resistance loci themselves, a consequence of the
fragmented pan-genome we're using. To overcome this limitation, we looked at
patterns of LD between our ten largest-effect markers to see if we could find evidence
of linkage among them. We found clear signals of enriched LD among the six markers
with the largest effect size, especially the largest-effect marker, a beta-lactam gene,
and the marker with the third-largest effect size, a Tn3 transposon fragment (Figure 6).
The observation of moderate/high but not near perfect (> 0.9 r?) LD among these
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markers likely reflects complex
patterns of physical linkage between
them whereby they're likely linked in
some parts of the phylogeny but not in
others.

Our results point to a distinct genetic

Second marker

architecture for ampicillin resistance

that involves the acquisition of any of
a variety of accessory genome )
B A EEEE.

First marker

components rather than specific core
genome mutations, as in the case of LD ()

ciprofloxacin resistance. While our 6 02 0.4 06 0.3

analysis only captures one previously

validated causal resistance locus, we Figure 6

can still conclude that ampicillin o . .

_ ) ) Pairwise linkage disequilibrium
resistance generally arises via >
. . (r°) among the ten largest-effect
plasmid and transposon resistance L )

o ampicillin resistance markers.
locus acquisition in our dataset, a
finding corroborated by previous

research on the occurrence of resistant beta-lactam genes [30].

Trimethoprim/sulfamethoxazole resistance

Markers of varying effect sizes characterized trimethoprim/sulfamethoxazole
resistance (Figure 4). Similar to the case of ciprofloxacin, one marker had a particularly
large effect size (the largest in any of our genomic-prediction analyses). The top ten
largest-effect markers were a mixture of SNPs and presence-absence markers (six
and four markers, respectively, a pattern that is intermediate to the results for
ciprofloxacin and ampicillin (Supplemental Table 2).

Our list of the top ten largest-effect markers seemed to be enriched for AadA
(aminoglycoside adenylyltransferase) and GNAT (GCN5-related N-acetyltransferases)
family proteins. The marker with the largest effect size is a SNP located on a short
contig (160 bp), which has multiple significant BLASTX hits to AadA family proteins (e.g.,
99% query cover and 100% sequence identity to an AadA in Pseudomonas gessardii)
in addition to hits to partial nucleotidyltransferase domain-containing proteins. This
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wasn't the only association with AadA proteins that we found. The marker with the
second-largest effect size (a SNP) also had significant BLASTXx hits to AadA1/ANT(3")
(99% query cover and 100% sequence identity to AadATl in E. coli). Finally, the marker
with the fourth-largest effect size (a presence-absence marker) had significant
BLASTXx hits to a GNAT family protein (80% query cover and 86% sequence identity to
a Klebsiella pneumoniae putative aminoglycoside N(6')-acetyltransferase (AAC(6”)).

Functionally, this enrichment for AadA and GNAT family proteins is perplexing. While
these protein families do indeed play crucial roles in antibiotic resistance, their
mechanism of action is the enzymatic modification of aminoglycoside family
antibiotics, which doesn't include either trimethoprim or sulfamethoxazole [31]. The
association between trimethoprim/sulfamethoxazole resistance and the largest-effect
marker was particularly strong and statistically robust. We considered the possibility
that the phenotypic data was mislabelled, checking both the source of the data (BV-
BRC) and the underlying studies [32], but we found no evidence of phenotype data
errors. We also didn’t find a strong phenotypic correlation between
trimethoprim/sulfamethoxazole and aminoglycoside antibiotics like gentamycin (r2 =
0.20) in our dataset.

While our genomic prediction analyses did a good job predicting
trimethoprim/sulfamethoxazole resistance, we couldn't link the largest-effect markers
to putative resistance loci. We suspect this is chiefly driven by the fragmented nature
of the pan-genome we use for this dataset. As resistance is often acquired through
plasmids/transposons [16][33], and such contigs are poorly assembled in our
pangenome, we might struggle to find candidate resistance loci among these
fragments. It could well be that an unassembled causal resistant dfrA locus [34] is
linked to the largest effect aadA gene we observe as predictive of
trimethoprim/sulfamethoxazole resistance, leading to our confusing results. This isn't
an unlikely hypothesis given the fact that resistance genes for multiple different types
of antibiotics are known to be stacked within single plasmids/transposon [33]. This
result implies that while we likely can predict most AMR phenotypes very well with both
linear and nonlinear models in this dataset, the interpretability of findings may be

challenging in some instances.

Key takeaways

- We performed exploratory analyses in the recently published E. coli 7k dataset



« The E. coli 7Tk dataset captures the global genomic diversity of E. coli and captures

both fine- and broad-scale diversity across evolutionary scales

« Genomic prediction analyses identified expected causal AMR loci for ciprofloxacin
and ampicillin but no interpretable genomic resistance targets for

trimethoprim/sulfamethoxazole

» Follow-up analyses demonstrate that while the overall genetic architecture of
resistance is often simple, it nonetheless can be dependent on more subtle

epistatic interactions

Next steps

Dataset availability currently limits the creation of realistic genetic models that can
account for linear and nonlinear phenomena. In this pub, we stress-tested the E. coli 7k
dataset for such modeling applications.

The E. coli 7k dataset lacks common biological and technical error signals. For
example, we detected purifying selection, a stable core genome, and isolation by
distance in genetic similarity among samples. Phylogenetic analyses indicated the
presence of diverse evolutionary scales: deeply branching phylogroups and rapidly
diversifying strains. Antibiotic resistance has evolved in multiple ways across this tree,
displaying both broad and clade-restricted distributions. Together, these results
provide confidence in the quality of the E. coli 7k dataset and confirm its suitability for
model development.

Linear genomic prediction methods were able to confidently predict AMR phenotypes.
However, the interpretability of these results varied. For example, we identified three
epistatic mutations underlying ciprofloxacin resistance in follow-up analyses.
Ampicillin resistance was also associated with interpretable loci, particularly plasmid
and transposon components likely linked to resistance genes. On the other hand, we
found no obvious link between loci and potential resistance mechanisms for
trimethoprim/sulfamethoxazole. These results provide a suitable baseline for
comparison as more complex models are developed.

We note some outstanding issues. First, the E. coli 7k dataset is centered on a
fragmented pan-genome, which makes it challenging to link genetic markers with AMR
phenotypes functionally. Second, it's possible that the genomic prediction methods



were underpowered because this is a natural population; selection will have eroded
unfit but informationally rich genotypes that could be uncovered in other contexts.

Overall, our findings set the stage for us to exploit this dataset to guide the use of more
complex nonlinear genomic prediction models. However, it's useful to consider when
and where we expect nonlinear models to provide an edge over linear genomic
prediction models. We hypothesize likely candidates for nonlinear models are
populations in which epistasis or gene-by-environment interactions are prevalent. For
example, the simplest form of epistasis — two-locus interactions — will be most
powerful in populations with intermediate (~0.5) allele frequencies [2]. This
requirement is most likely to be met in highly structured populations — especially
products of artificial crosses or selection — or where mutations are fixed between
evolutionarily diverged lineages [35][36]. Gene-by-environment interactions are more
complicated to predict and are likely implicated in complex, highly polygenic traits
sensitive to environmental conditions (e.g., agronomic yield [37]). Datasets in which
phenotypes were measured in the field are likely candidates for approaching gene-by-
environment signals. It'll be useful to continue developing intuitions for which model
architectures will best capture these various processes of diversification, pushing our
ability to extract inference in contexts where our knowledge of the genotype-
phenotype map is much less understood.
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