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Purpose

Biomedical research heavily relies on a few "supermodel organisms." Research using
these organisms often fails to translate to human biology, limiting progress and clinical
success. Recognizing these limitations, there's growing interest in expanding the
diversity of research organisms. However, there's, as of yet, no optimal way to pair
organisms with biological problems. Depending on the research question, each
organism possesses distinct features that can be assets or liabilities. We developed a
method to identify organisms best suited to specific problems and applied it to an
“organismal portfolio” representing the breadth of eukaryotic diversity. We found that
many aspects of human biology could be studied in unexpected species, broadening

the potential for new biomedical insights.
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- This pub is part of the platform effort, “Genetics: Decoding evolutionary drivers

across biology.” Visit the platform narrative for more background and context.

. All associated code is available in this GitHub repository.

- Data from this pub, including input proteomes, NovelTree outputs, molecular

conservation values, and associated metadata are available on Zenodo.

» For a more conceptual overview of our organismal selection framework, read our

companion pub, “A data-driven approach to match organisms and research

problems [1].”

. Check out an example of this approach in action, “Rescuing Chlamydomonas

motility in mutants modeling_spermatogenic failure” [2].

Background and goals

Organismal models play a crucial role in biomedical research, shaping what can be
discovered, developed, and understood. Research on model organisms has revealed
many of the foundational principles of modern biology. Our knowledge of human
biology has largely stemmed from studies of non-human species. Every drug
progressing to clinical trials necessitates in vivo experimentation, which relies on
selecting the appropriate organism for the specific research question.

For most biologists, only a limited number of organisms are typically considered. A
select group of “supermodel organisms” such as mice, flies, nematodes, frogs, and
zebrafish dominate current research, and their use is increasing [3]. Trends in grant
proposals [4], publications [5][6], and clinical trials [7] indicate a narrowing focus on
these specific organisms.

This narrowing of focus might be acceptable if supermodel organisms provided
universal biological insights. Unfortunately, they don't. Research findings from these
organisms often fail to generalize to other contexts [8]. Only 8% of basic research —
primarily involving supermodels — translates successfully into clinical settings [9].
Additionally, 95% of drug candidates fail during clinical development [9]. The drug
response profiles observed in common model organisms often don't predict those of
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humans [10]. In the worst-case scenarios, years of research and millions of dollars
may be spent investigating traits unique to a supermodel organism that doesn't apply
to humans [8][11].

The limitations of using supermodels in research have long been acknowledged [3][8]
[12][13], leading to a growing interest in broadening the diversity of organisms used in
biomedical studies [11]. Inspired by frameworks like Krogh's principle — which suggests
that "for a large number of problems, there will be specific animals that can be studied
most conveniently" [14][15] — researchers are increasingly exploring organisms
beyond the traditional supermodels. This shift is facilitated by the availability of
generalizable genetic and molecular tools, prompting more biologists to engage with
diverse research organisms [16][17][18].

Choosing which of the millions of existing species to study isn't a simple task. While all
organisms have their merits for research [19], selecting a species that aligns with a
specific question requires careful consideration of various biological, technical, and
practical factors [20]. Each organism has unique evolutionary traits — some highly
conserved, others distinct — that can either aid or hinder research, depending on the
question being addressed [12]. Research failures often occur when these features are
overlooked in the design of biomedical studies. By better understanding the
evolutionary histories of these research organisms, we can navigate the potential

advantages and challenges they present.

In this study, we developed an evidence-based approach to match research
organisms with specific biological problems. We employed novel methods to analyze
the evolutionary landscape of an organism's protein-coding genome and identify
which genes are most conserved with humans. By applying our method to a diverse
portfolio of 63 eukaryotic organisms, we discovered that the similarity in proteins often
didn't align with what neutral evolutionary expectations would predict.

Contrary to the “Scala Naturae” model (often called the "great chain of being"), which
suggests that complexity increases linearly with similarity to humans, our findings
revealed a more complex reality. Many human traits can be found in the eukaryotic
tree's unexpected and distantly related branches. This greatly expands the potential

avenues for addressing some of biology's most challenging problems.



The approach

Organismal curation

We used publicly available data to curate a portfolio of 63 diverse eukaryotic species.
We performed a literature review and surveyed public databases to identify eukaryotes
with publicly available proteomes. Since our goal was to identify potential models for
human biology, we then determined which species had available tools for genetic
perturbations. Finally, we selected species based on taxonomic breadth — ensuring
representation from major eukaryotic lineages — and depth, which involved spanning
vertebrate and metazoan diversity to facilitate gene family inference. Taxonomic
classifications were assigned to each species following the conventions in the EukProt
database [21].

SHOW ME THE DATA: The sources and metadata for these species and their
proteomes are available on Zenodo (DOI: 10.5281/zenodo.14425432).

Phylogenomic inference

Proteomes were pre-processed by filtering out redundant and short sequences and
curating functional annotations (e.g., KEGG annotations) [22]. Filtering was executed
by a Snakemake workflow, the details of which are described in a previous publication

[22]. The sample sheet used as input to the Snakemake workflow and the filtered
proteomes and intermediate outputs can be found here [23].

We used the filtered proteomes as input to NovelTree (v1.0.2) to infer gene families,
multiple sequence alignments, gene family trees, and species trees [24]. We ran
NovelTree on NextFlow Tower with run-specific parameters specified in the
configuration file on Zenodo. We assessed a range of inflation parameters (from 1.25 to
4.5; 0.25 increments) to identify the optimal choice for use with OrthoFinder (v2.5.4)
[25][26] and cogeqc (v1.2.1) [27]. We filtered out gene families that contained fewer
than five proteins, represented fewer than five species, and/or were shorter than 30
amino acids in length. We then used WITCH (v0.3.0) [28] to perform multiple sequence
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alignments and inferred gene family trees using IQ-TREE 2 (v2.2.0.5) [29]. We then
used Asteroid (v1.0) (git sha: 3aae117) [30] and SpeciesRax [31] (as implemented in
GeneRax (v2.0.4) (git sha: 56f3ed0)) to infer species trees. Species trees were inferred
using gene families containing at least 75% of species in the portfolio and had a mean
per-species copy number < 10.

Protein physicochemical property calculations

We calculated ten protein physicochemical properties for each protein in our dataset
using the ProtParam [32] module implemented within Biopython [33]. The properties
were: 1) molecular weight, 2) aromaticity, 3) instability index, 4) flexibility, 5) GRAVY
(grand average of hydrophobicity), 6) isoelectric point, 7) charge at PH 7, 8) helix
fraction, 9) sheet fraction, and 10) molar extinction coefficient of cysteines. These
protein features were calculated using the genefam_aa_summaries.py script. In

addition to the above properties, we also calculated two other GRAVY metrics, four
other charges (at PH 3, 5, 9, & 11), turn fraction, the molar extinction coefficient of
cystines, and amino acid composition, but given their redundancy with other
properties, they weren't used in downstream analyses.

Accounting for evolutionary non-independence

Species' traits (e.g., physicochemical properties) are evolutionarily (and, thus,
statistically) non-independent. Closely related species will often have similar traits.
This similarity is most likely due to shared ancestry, which, if not accounted for, can
mask the signal of biological processes of interest. To control this, we used a
phylogenetic transform to identify residual variation not explained by shared
evolutionary history (i.e., phylogeny/gene tree) for each physicochemical property.

Specifically, we applied a phylogenetic generalized least-squares (PGLS) [34]
transformation. PGLS effectively adjusts the observed data to unit variance after
correcting for the covariance in traits induced by evolutionary non-independence
under Brownian motion. The PGLS transformation assumes elements of the
phylogenetic covariance matrix correspond to the amount of time (i.e., branch lengths)
from the root of the tree to the common ancestor of each pair of taxa. That is, the
phylogenetic tree that’s used to conduct the transformation is expected to be time-
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calibrated, with branch lengths corresponding to units of time, rather than
substitutions-per-site as is common for trees inferred using molecular data as is the
case in NovelTree [24]. We thus sought to time-calibrate each gene family tree before

the application of the transform to the protein physicochemical property data.

We employed a two-step approach that used congruification [35]. First, we time-
calibrated our species tree, enabling us to time-calibrate each gene family tree. In
summary, the congruification method involves mapping divergence times from an
existing time tree onto an uncalibrated phylogeny with partially overlapping taxa,
followed by rate smoothing to calibrate the divergence times in the target phylogeny.
While this method may be less accurate than others, it's highly efficient, making it well-
suited for our high-throughput use case, which required the time calibration of 14,067
gene family trees covering 629,320 proteins.

Specifically, we obtained a time-calibrated tree that included 59 of the 64 species in
our dataset from timetree.org. We then congruified this tree with the species tree
inferred by SpeciesRax using the congruify.phylo function inthe R-package geiger
(v2.0.11) [36]. Using the time-calibrated species tree, we subsequently congruified
each gene family tree and applied the PGLS transformation to the protein
physicochemical property data for each gene family.

The PGLS transformation was implemented in a custom R function,

phylo_gls_transform . This function uses the vcvPhylo function from phytools (v2.1-

1) [37][38] to obtain the phylogenetic variance-covariance from a species or gene tree.
It then calls a custom Rcpp function ( phylo_correction ) to perform the phylogenetic

GLS transformation.

Quantification of protein (dis)similarity

Using these transformed protein physicochemical property data, we quantified
multivariate Mahalanobis distances between all pairs of proteins within each gene
family containing a human homolog. This distance metric accounts for covariances
between variables to determine the distance between observations, making it well-
suited to complex datasets like ours. However, the calculation of Mahalanobis
distances is computationally intensive — a problem that's exacerbated by the high
dimensionality of our dataset (10 physicochemical properties) and by the large number
of observations among which we needed to compare (9,260 gene families; > 51 million
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comparisons in total). Consequently, we developed our own highly efficient,
parallelized implementation of its calculation in Rcpp: pairwise mahalanobis .

Phylogenetic visualization and gene family
distribution comparison

The time-calibrated SpeciesRax species tree was used for all downstream analyses.
The phylogenetic visualization in Figure 1 was generated using the ggtree functionin
the R package ggtree [39]. Cophenetic distances of the species tree were calculated
using the function cophenetic.phylo inthe R package ape [40].

We employed a permutation-based method to simulate the number of gene families
shared between humans and non-human species, as shown in Figure 2. First, we
developed a linear model to predict the number of gene families shared based on the
evolutionary distance from humans for each species (using the R function 1m ). We
then extracted the predicted values from this model and normalized them by dividing
them by the total predicted count. This process provided us with a proportion for each
species, allowing us to pose the question: “Given n random draws from the set of gene
families containing human homologs, how many would we expect to have a homolog
belonging to species x?”

We created a hypothetical “pool” of proteins to sample from, consisting of 100,000
unique proteins, each representing a different species. The frequency of each protein
was determined based on previously calculated expected proportions. Sample sizes
were established based on observed gene family sizes, which ranged from four to
45,364 proteins.

For each sample size, we randomly sampled proteins 100 times. For example, when
sampling from a gene family size of 10, we randomly selected 10 proteins from the pool
and identified the species represented in each sample. This process was repeated
100 times. Finally, we analyzed all permutations to determine the gene family size from

which we began sampling proteins across all 63 species.
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Describing patterns of molecular (dis)similarity

In a previous section, we explained how we quantified the similarity between human
proteins and their non-human homologs within each gene family based on proteins'
physicochemical properties. Using a more evolutionarily informed approach, this
analysis enables us to identify species that may serve as better model organisms than
the traditional "supermodel" species. We recognize that non-human homologs
exhibiting a high degree of similarity to their human counterparts are also likely to be
functionally similar.

This functional similarity can result from different evolutionary processes: conservation
and convergence, or other forms of non-parallel evolution [41]. Similarity due to
conservation arises from long-term evolutionary stasis, while convergence refers to
the independent evolution of similar traits from unrelated common ancestors. Since
our primary goal is to identify non-human proteins that likely share functions with their
human homologs, we don't attempt to distinguish between these hypotheses in this

discussion.

For clarity, we'll refer to protein similarity as molecular conservation throughout the rest
of the publication, using our multivariate distance measures to indicate levels of
conservation; specifically, smaller distances correspond to more significant
conservation.

In Figure 3, B, we compare the distributions of molecular similarity across all gene
families. To achieve this, we first characterized the distribution of protein conservation
within each gene family by computing a frequency histogram. These histograms were
binned in an equivalent way, allowing for a direct comparison of gene families based on
their frequency distributions. As a heuristic approach, we applied hierarchical
clustering using the R function hcl , to illustrate the relationships among gene
families based on these binned similarity data.

Next, we investigated how the evolutionary distance from human homologs predicts
molecular conservation and how this relationship varies among different gene families
(examples can be seen in Figure 5). We conducted a regression analysis of the
cophenetic distance from human homologs and molecular conservation for each
protein, using the R function 1m . This analysis identified the homolog most similar to
humans for each species. The fitted models and their slopes were then used to
illustrate the four examples in the figure.



To better understand and visualize the interaction between evolutionary relatedness
and overall patterns of molecular conservation to humans, we constructed a
phylomorphospace [42] (Figure 6). We first generated a matrix of similarity values,
where the columns corresponded to the number of human proteins in the dataset, and
the rows represented different species. The matrix was populated as follows: for each
species and a specific column (representing a human protein), we identified the
homolog in the species most similar to the human protein. If that species lacked a
homolog, we used the global maximum conservation value instead. We then applied
principal component analysis to create a lower-dimensional embedding of this matrix.
The correlation between the principal components and gene family
number/phylogenetic distance was assessed using the R function cor.test . Finally,
we used the first two principal components to create the phylomorphospace with the
phylomorphospace function fromthe R package phytools (v2.1-1) [38].

Elo ratings

We quantified per-species conservation enrichment using the Elo rating system [43].
Since Elo ratings are sensitive to match order, we used a permutation-based approach
that used repeated random starts to ensure robustness, following previous work [44]
[45]. Matchups were only constructed within gene families to control for differences in
gene family number across species and variation in molecular conservation across
gene families.

We first identified all possible matchups within each gene family. All non-human
proteins were given a score representing the conservation value of their homolog
most similar to any human protein in the gene family. We selected the more conserved
protein if a species shared multiple homologs with a given human protein.
Furthermore, we only considered gene families with at least 10 possible matchups.
When compiled, this resulted in 269,050 possible matchups. Each matchup pitted
proteins from two species against each other. The “winner” was the species with the
protein most similar to human.

We then constructed 50 series of 10,000 randomly selected matchups. Essentially,
each series could be considered a “season” over which 10,000 matchups are played,
each containing a different set of matchups. Species that ended each season with a
similar Elo rating could be considered robust to matchup order. Species began each
season with an Elo rating of 1,500. Ratings were updated after each match using the



elo.cal function from the R package elo [46]. We then averaged across all seasons
to get a mean Elo rating for each species. The relative probabilities of the mean Elo
ratings were compared using the function elo.prob . Species mean Elo ratings were
compared to the number of gene families shared with humans using a linear model
implemented by the R function 1m . Two-way comparisons of mean Elo ratings were
done with a Kruskal-Wallis test using the function kruskal.test inR.

All code generated and used for the pub is available in this GitHub repository
(DOI: 10.5281/zen0d0.14479310)

Additional methods

We used Grammarly Premium to suggest wording ideas, reorganize text using a
template, and help clarify and streamline text that we wrote. We also used ChatGPT to
help write code and comment our code.

The results

Mapping over 1 billion years of molecular
evolution

Genomes aren't singular units. Genomes are configurations of the tangled paths a set
of genes has taken. These paths involve gain, loss, duplication, change, and/or re-
purposement [24][47]. Given this complexity, the relationships inferred between any
two genomes (and species) will depend on which genes are considered. For example,
genes that share a common ancestor will often possess similar sequences (i.e., they're
homologous) [47]. However, similar sequences sometimes arise independently in
distantly related species (i.e., they're convergent). If only convergent genes were
considered, one might (wrongly) conclude that these two species are closely related.
While this genome complexity presents challenges in some situations (such as
phylogenetic inference), it may be a boon in others.
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If genomes were singular units, the answer to “Which organism is best for modeling
disease X, Y, or Z?” would always be the same (and likely always be “mice”). Yet, like all
other genomes, the human genome is a mixture of evolutionary histories [48][49].
Some genes have been gained, lost, or duplicated [50]. Others are conserved to
varying degrees; some are shared with the last universal common ancestor, and others
with animals, vertebrates, mammals, or primates [48]. Some have evolved

convergently.

What’s more, these patterns aren’t unique to humans. The genomes of popular
organismal models are also complex amalgamations. For example, mice have evolved
unique immune [51], metabolic, and life history characteristics [8]. This all means that,
from a genetic perspective, there's no single best organismal model for all aspects of
human biology. Instead, an organismal portfolio is needed.

The evolutionary history of genes can guide the design of such a portfolio. Deeply
conserved genes open up the possibility of studying more tractable yet distantly
related species. More recently conserved genes will make closely related species
better choices. However, in some cases, these close relatives may be on divergent
evolutionary paths, leading them to lack traits relevant to an aspect of human biology.
Convergent genes can only be studied in organisms where they've evolved, offering
challenges (those species must be identified) and opportunities (they're likely to share
important aspects of the relevant biology). Genes specific to humans will require very
different modeling approaches since they lack naturally occurring analogs. Capturing
these diverse patterns involves the reconstruction of each gene’s evolutionary history.

We set out to build a eukaryotic organismal portfolio for human biology. We selected
63 species as candidate models (see Approach for inclusion criteria). These species

had a last common ancestor over one billion years ago and represent many eukaryotic
lineages (Figure 1). They span the uni- to multicellular transition, live in most of Earth’s
major biomes, and implement various life history strategies. Some are parasitic; some
are photosynthetic. Some are endosymbiotic; others filter feed in the oceans’ pelagic
zones. There are well-established supermodels (mice, zebrafish, C. elegans, D.
melanogaster, S. cerevisiae) and comparatively understudied protists (e.g.,

Euglenozoa, Percolozoa, and the hyper-diverse TSAR clade).
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Figure 1

A eukaryotic organismal portfolio.

Taxonomic group

@ Acoelomorpha
@ Arthropoda
Ascomycota
@ Bangiales
Basidiomycota
Chlorarachnea
Chlorodendrophyceae
Chlorophyceae
Cnidaria
Coccidiomorphea
Euglenids
Craspedida
Ctenophora
@ Diatomeae
Dictyostelia
Dinophyceae
Diplonemidae
Entamoeba
Eustigmatophyceae
Fornicata
Heterolobosea
@ Ichthyophonida
@ Mamiellophyceae
Metakinetoplastina
Nematoda
Oligohymenophorea
Panarthropoda
Perkinsea
@ Platyhelminthes
Prymnesiophyceae
Trebouxiophyceae
Urochordata
@ \ertebrata

Time-calibrated species phylogeny created with SpeciesRax. Taxonomic groups
correspond to taxogroupl described by EukProt.

We used the NovelTree workflow [24] to infer gene families and evolutionary

relationships (i.e., phylogenies) among proteins within each gene family and among
species, incorporating information across gene families. After filtering, we identified

9,260 human-containing gene families, encompassing 17,644 human proteins (see

Approach for filtering details). The taxonomic distribution of these gene families

approximated evolutionary relationships; the more related a species was to humans,

the more gene families were shared between them (Figure 2, A). For example,

vertebrates possessed twice the number of gene families than non-vertebrates on
average (vertebrates = 7,996, non-vertebrates = 3,075; p = 6.73 x 10~8, Kruskal-Wallis
test). Chimpanzees were associated with the most gene families (Pan troglodytes;
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9,158 gene families), while the Ichtheosporean Abeoforma whisleri was associated with
the least (1,217 gene families). Intriguingly, they also suggest that even the least
represented species within the portfolio had a roughly 1:9 (1,217/9,260 gene families)
chance of being a potential model candidate. The portfolio, therefore, empowers us to
identify organismal models across the phylogenetic breadth of eukaryotes.

We were next interested in assessing our sensitivity for discriminating between
candidate models. Variation in the presence/absence of gene families would strongly
decay with phylogenetic distance, meaning that related species might differ little in the
genes they share with humans. This would be a scenario in which organismal selection
might be straightforward (albeit a bit boring): species more closely related to humans
will always be favored as model organisms. On the other hand, we might observe
substantial variation in species’ molecular conservation with humans. In this “high-
sensitivity” scenario, the species favored as model organisms will be more variable,
necessitating a more involved and nuanced species selection process. Because each
gene family would show a different conservation pattern, other aspects of natural
history and evolutionary biology could be leveraged to pinpoint an organismal model.

As predicted by such a scenario, we found that gene family presence varied
substantially within and across phylogenetic scales (Figure 2, A). For example, the
anemone Exaiptasia diaphana shared more gene families with humans (5,663) than the
early-branching vertebrate Petromyzon marinus (sea lamprey; 4,618) despite the latter
being more closely related to humans. Furthermore, the even more distant ctenophore
Mnemiopsis leidyi was about evenly matched with the lamprey (4,583 gene families).
This variation was also present at greater phylogenetic distances. The unicellular algae
Chlamydomonas reinhardtii shared more gene families with humans than similarly

distant species (such as the parasite Giardia intestinalis) (Figure 2, A). These patterns

indicate substantial variation in gene family presence/absence across evolutionary
scales within the portfolio, even among the most distant species.

These individual examples were also reflected at global taxonomic scales. The counts
of unique species within gene family swiftly increased with total gene count (Figure 2,
B) and significantly faster than expected in a simulated low-sensitivity scenario (i.e.,
where the number of gene families shared with humans linearly decays with
evolutionary distance) (Figure 2, B; permutation-based sampling, see Approach). The
smallest gene family representing all 63 species contained 70 genes. The equivalent
measure in the simulated data was almost four times greater (264 genes). The
relationship between the count of unique species within a gene family and that gene



family’s age (i.e., time to the most recent common ancestor of all gene copies)
revealed diverse species combinations across all sizes (Figure 2, C). The age of gene
families increased linearly to ~20 species, after which the relationship plateaued

(Figure 2, C).

Interestingly, gene families with as few as five species spanned the full evolutionary
range of the portfolio, meaning these small gene families contained everything from
the most closely related species to those most distantly related in our dataset (Figure
2, C). For example, gene family OG0013524 (human protein AGNEQO) contained
proteins from primates (humans, macaques, chimpanzees, marmosets) and the
unicellular Euglenozoan Bodo saltans. These observations make clear that our
portfolio is thus both broad — encompassing much of eukaryotic diversity — and
sensitive, allowing for targeted and flexible selection of research organisms.
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Figure 2

Evolutionary distribution of human gene families.

(A) Number of gene families shared with humans as a function of cophenetic
distance from humans. Labeled organisms are (from left to right): Xenopus
tropicalis, Danio rerio, Petromyzon marinus, Exaiptasia diaphana, Mnemiopsis
leidyi, Giardia intestinalis, and Chlamydomonas reinhardltii.

(B) Density scatter plot comparing protein (x-axis) and species number (y-axis)
across gene families. As estimated by simulations, the expected relationship
between these values is denoted by the black line.

(C) Density scatter plot of species number (x-axis) and all gene families'
evolutionary scale (y-axis).



A novel measure of molecular similarity

Next, we turned our attention to measuring the similarity of molecular properties of the
proteins encoded by each gene with their corresponding human homologs.
Conservation is commonly inferred by sequence similarity; the more shared a
sequence is, the more similar two genes or proteins are presumed to be [17]. We
wanted to address the limitations of this approach. For one, sequence similarity
doesn't always mean functional similarity. It's possible to have two proteins with low
overall sequence similarity but share critical portions determining structure and
function. In other words, not all portions of a sequence are the same. Sequences are
also tied up with species’ relatedness. More closely related species will, on average,
necessarily have more similar and shared sequences than more distantly related
species. This can make it hard to detect cases wherein very distantly related species
share sequences that perform the same function through conservation, convergence,
or other evolutionary means. Given our portfolio's massive range of evolutionary

diversity, we concluded that relying on sequence similarity alone wouldn't cut it.

To address the insufficiency of sequence similarity for our purposes, we developed a
novel molecular conservation measure incorporating phylogenetic and protein
physicochemical properties (see Approach for details; Figure 3). First, various

physicochemical measures and secondary structural properties are calculated from

the amino acid sequences of all proteins in a gene family (Figure 3, step 1). As

previously described, however, proteins are evolutionarily (and thus statistically) non-
independent of one another. To account for this non-independence, we adjusted each
measure for evolutionary relatedness using a phylogenetic generalized least squares
transformation (PGLS transform; Figure 3, step 2) rendering each protein statistically

independent. Using these adjusted protein features, we quantified all pairwise
(dis)similarities among proteins within each gene family using Mahalonobis distances
(Figure 3, steps 3-4). Last, the distance from the closest human protein was identified
for each protein, resulting in our final conservation measure (Figure 3, step 5).
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Calculating molecular conservation.

1) Heatmap of one protein physicochemical property. Here, molecular weight
(“Weight”) is an example. The colored points represent individual species. Colors
correspond to the EukProt taxogroup1 (the purple infant cartoon indicates
human). Each species’ molecular weight is represented by color intensity.

2) We use a phylogenetic generalized least squares (PGLS) transformation to
correct for evolutionary relatedness, rendering proteins statistically independent.
The heatmap in this panel reflects molecular weight after this correction.

3) Cartoon of the combined matrix of 10 evolutionarily corrected
physicochemical properties (haming key: “Weight” = molecular weight, “Aroma”
= aromaticity, “Instability” = instability index, “Flex” = flexibility, “GRAVY” =
GRAVY index, “Iso” = isoelectric point, “PH” = charge at PH 7, “Helix” = helix

fraction, “Sheet” = sheet fraction, “Cysteine” = molar extinction coefficient of
cysteines).

4) Cartoon 2-dimensional space representing the Mahalonobis distances
measured between species’ proteins.



5) Ranked distribution of distances from the human versions for all proteins
considered.

Conservation with human homologs wasn't uniformly distributed across species

(Figure 4). Gene families differed extensively in their distributions' shape, dynamic

range, and magnitude (Figure 4), with many containing genes spanning the full range of

conservation (Figure 4). Some were similar to humans, with little evolutionary variation

(Figure 4), while others were uniformly distant (Figure 4). These observations reinforce

that genomes aren't evolutionarily singular units.
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Figure 4

Landscape of molecular conservation between eukaryotes and humans.

Hierarchical clustering of gene families according to conservation patterns with
humans across species in our portfolio. Each point corresponds to an individual
protein. Conservation is measured using the multivariate distance metric
described in Figure 3.

The distribution of conservation to individual human proteins further supports this
observation, as shown in Figure 5. For example, PTN4 (UniProt: P29074) is a neurally
associated phosphatase that matches evolutionary expectations under a molecular
clock hypothesis; molecular conservation to this protein decreases linearly with
evolutionary distance (Figure 5, A). The transcription factor FOXA1 (UniProt: P55317)
also shows this pattern but, unlike PTN4, is generally not highly conserved (Figure 5, B).


https://www.uniprot.org/uniprotkb/P29074/entry
https://www.uniprot.org/uniprotkb/P55317/entry

In contrast, conservation to proteins such as ARF3 (UniProt: P61204) — an ADP-
ribosylation factor — is uniformly high across the portfolio (mean conservation = 0.88,
slope = 2.78e79°, 2 = 0.09) (Figure 5, C). Finally, and intriguingly, molecular and
evolutionary distance can display a negative relationship (i.e., more distantly related
proteins are increasingly similar), as is the case for mitochondrial protein S3HIDH
(UniProt: P31937; Figure 5, D). The observed variation of conservation profiles can

refine our evolutionary hypotheses and help identify and take advantage of even
counterintuitive patterns. It also underlines the importance of questioning Scala

Naturae thinking in organismal selection for biomedical research.


https://www.uniprot.org/uniprotkb/P61204/entry
https://www.uniprot.org/uniprotkb/P31937/entry
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The diversity of conservation profiles.
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Human proteins are characterized by the relationship between conservation

(“Distance from human protein”) and phylogenetic distance from humans

(“Cophenetic distance”). Examples include proteins where similarity linearly
decreases (A; PTN4, B; FOXAT1; C; ARF3), is uniformly highly divergent (B) or
deeply conserved (C), or even increases with phylogenetic distance (D; 3HIDH).

r = linear regression fit.



De novo identification of supermodel organisms

Our approach was founded on the idea that genome-wide conservation with humans
can link potential organismal models with various aspects of human biology. By
leveraging this idea, we posited that we could develop an organismal portfolio for each
biological question by characterizing these connections. Just how specific might
these portfolios be? As we saw above, individual gene family’s evolutionary histories
vary broadly. Whether or not these patterns translate to organismal-level differences is
presently unclear. Are certain organisms disproportionately suited to modeling diverse
aspects of human biology? If yes, then “general purpose” organismal models may be
developed, potentially simplifying the model selection process. We sought to test this
hypothesis.

To begin doing so, we first explored the extent to which evolutionary relationships
predict genome-wide conservation patterns. Each species was characterized by a
numerical vector containing binary (i.e., presence/absence) and continuous (i.e.,
molecular conservation) representations of conservation with all human proteins in the
dataset. We assessed the relationships between these genome-wide conservation
patterns using principal component analysis (PCA) (Figure 6, A). PC1 was significantly

correlated with homolog presence/absence (r = —0.98; p = 5.70 x 10745; Pearson
correlation) and phylogenetic distance (r = 0.92; p = 1.75 x 10~25; Pearson correlation)
and explained 45.89% of the observed variance. Projecting the species phylogeny
onto PC space further highlighted these relationships (Figure 6, A). We found a clear
phylogenetic path through the first two PC axes (Figure 6, A). Notably, of all the PCs (N
= 63), only PC1 displayed significant correlations with ortholog presence/absence and
phylogenetic distance (not shown). This means that most genome-wide conservation
variation isn’t captured by ortholog presence/absence and can't be directly predicted
from phylogenetic relationships. Instead, the (more complex) patterns of protein
conservation across each species’ proteome must be considered.

Given these observations, we next sought to characterize the conservation profiles of
each species’ orthologs. We wanted to know if a given species’ proteins were
consistently more conserved with their human counterparts than expected. We
needed a method robust to the uneven representation of species within our dataset;
this led to identifying the Elo rating system as a candidate framework [43]. Developed
initially to rate chess players, Elo ratings assess players' relative skills across a series
of “matches” in a zero-sum framework. The Elo system is increasingly used to evaluate
machine learning model performance [45], and ratings have been used to identify



species-level biases on protein language model likelihoods [44]. Influenced by this
work, we developed a permutation-based approach for assessing relative enrichment
for conservation to human proteins for each species using Elo ratings (see Approach).

Elo ratings exhibited a range of variability across trials within and across species after
summarizing across trials (Figure 6, B-C). In our implementation, scores greater than

1500 represented doing “better” than random. Similarly, scores less than 1500 are
“worse” than random. Chimpanzees had the highest rating (mean Elo rating = 1618)
whereas (as with gene family number) Abeoforma whisleri ranked last (mean Elo rating
= 1414), meaning that chimpanzee proteins were more similar to human homologs
76.4% of the time (Figure 2). Vertebrate species, except for lamprey (Petromyzon
marinus), had scores above 1500 and a median rating of 1571. Non-vertebrates had a
median rating of 1478. Overall, ratings generally decreased with phylogenetic distance
from humans (Figure 6, C). These expected evolutionary signals provided confidence
in using Elo ratings for this task.
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Using Elo ratings to rank research organisms.

(A) Phylomorphospace obtained using conservation to humans and gene family
presence/absence for each species as measured across all 9,260 human gene
families in our dataset. Percent values correspond to variation explained by each
PC. Each point is a species, colored by taxonomic grouping.

(B) Example of Elo rating changes over a series of matchups (each line
corresponds to a species). All species start with a rating of 1500, marked by the
dotted line.

(C) Distribution of mean Elo ratings as a function of phylogenetic distance from
human.



Elo ratings weren't linearly predicted by phylogenetic distances, exhibiting substantial
variation at different taxonomic depths. Several outlying species could be readily
identified (Figure 6, C). For instance, Zebrafish (Danio rerio) beat out primates and
mammals to obtain the second-highest rating (Elo rating = 1615), just behind
chimpanzees (Elo rating = 1618). Proteins from the unicellular algae Chlorella vulgaris
(Elo rating = 1564) were 67.5% more likely to be conserved with humans than the
closely related species Chlamydomonas reinhardtii (Elo rating = 1437). Although
vertebrates possessed significantly larger Elo ratings than other taxa (p = 772 x 10~7;
Kruskal-Wallis test), non-vertebrate multicellular species were indistinguishable from
unicellular species (p = 0.74; Kruskal-Wallis test). Furthermore, the four most
phylogenetically distant species from humans (Bodo saltans, Diplonema papillatum,
Euglena gracilis, Nageleria gruberi) possessed Elo ratings comparable to invertebrates
that arose hundreds of millions of years later (p = 0.57; Kruskal-Wallis test).

How unexpected are these patterns? To explore this, we performed a regression
predicting Elo rating with variation in the count of human gene families in which each
species was present. The model had a reasonably good fit (multiple R = 0.66; p = 4.49
x 10776), as might be expected given the presence of phylogenetic signal in both the
Elo ratings and the counts of human gene families. However, we were interested in
what wasn’t described by the model, reasoning that species with exceptional
molecular conservation would be associated with positive residual variance (i.e., Elo
ratings higher than predicted by this null model).

Exceptional molecular conservation was observed across a wide range of eukaryotic
diversity. Notable examples included Chlorella vulgaris (3.56; Studentized residual),
Paramecium tetraurelia (2.42), zebrafish (2.35), chimpanzees (1.53), the frog Xenopus
tropicalis (1.41), the ciliate Tetrahymena thermophila (1.05), the amoeba Naegleria
gruberi (1.03), the malaria-causing parasite Plasmodium falciparum (1.03), the
unicellular algae Euglena gracilis (0.96), and the ctenophore Mnemiopsis leidyi (0.95)
(Figure 5, C). Interestingly, some well-studied model organisms exhibited less
molecular conservation than anticipated. Nematodes (Caenorhabditis elegans)
displayed a negative residual of —0.56, fruit flies (Drosophila melanogaster) had —0.49,

and brewer's yeast (Saccharomyces cerevisiae) showed —0.12 (Figure 5, C).

At higher taxonomic levels, consistent patterns emerged. Heterotrophic and parasitic
protists were notably enriched, including Ciliophora (1.73), Heterolobosea (1.03), and
Apicomplexa (10.3). Fungi aligned with expectations, showing a result of 0.005, while



taxa representing the transition from unicellular to multicellular organisms, such as
Choanoflagellata (—1.16) and Ictheosporea (-1.09), were underrepresented (Figure 5, C).

These observations lead us to conclude that the landscape of genomic conservation is
complex and can't be easily predicted by evolutionary relationships alone. Additionally,

Elo rating distributions may provide insights into the breadth of human biology that can
be modeled using specific research organisms.

Key takeaways

Every species represents a combination of various evolutionary paths, making it
difficult to predict which organisms will serve as effective models for understanding
human biology. However, by examining the evolutionary context of a species' genome,
we can make informed assumptions about the biological insights we might gain from
studying that species.

We developed an approach to map the similarities between human genes and those
of 63 eukaryotic research organisms. We identified a range of potential model
organisms for each gene by analyzing conservation profiles across the human
genome. Many of these profiles highlighted species that aren't typically supermodel
organisms. Additionally, through global conservation analyses, we pinpointed species
that share remarkable molecular similarities with humans based on their phylogenetic
positions. Our findings revealed organisms throughout the eukaryotic tree that could
serve as valuable model systems, expanding the range of possible organismal models
in biomedical research. This approach allows researchers to test their assumptions
regarding potential models and provides an evidence base that can free biologists
from reliance on conventional wisdom.

Next steps

Experimental validation of our predictions is of great interest. We have begun using the
conservation profiles of human genes to identify novel organismal models for genetic
diseases. An example of our work can be found in a companion publication [2], where
we identified Chlamydomonas reinhardtii as a potential model for studying human
spermatogenic failure. Through a small-scale drug screen, we demonstrated that the
phenotypic effects of two human risk genes — SPEF2 and DNALIT — are conserved,



supporting our evolutionary hypotheses. In the future, we'll focus on validating
additional predictions and leveraging our approach to discover new research
organisms for genetic and therapeutic explorations.

There are several potential computational extensions we could pursue. The findings in
this publication primarily addressed the evolutionary patterns of single genes. A logical
next step is to explore gene sets (e.g., molecular pathways, pairwise interactors, and
polygenic disease targets) to enhance our ability to predict complex phenotypic
conservation in research organisms. This could facilitate the development of
innovative phylogenetic methods for comparing the evolution of genetic pathways.
Additionally, it could help us generalize our approaches to other biological applications
beyond human disease modeling.

Increasing the number of species analyzed would improve our coverage of eukaryotic
diversity and enhance the precision of our predictions. An intriguing extension could
involve creating a comprehensive organismal portfolio. By predicting more complex
biological features across a broader range of species, we could outline a roadmap for
biomedical research that effectively pairs specific problems with suitable organismal
models and research designs. Even if achieving this goal proves challenging, working
towards it should enhance our chances of identifying fundamental biological principles
and determining where they can be most effectively applied.
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