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Epistasis and deep
learning in quantitative
genetics

We explore when deep learning (DL) outperforms linear models in
predicting complex phenotypes. We show that DL requires at least
20% as many samples as possible epistatic interactions, and
benefits from marker feature selection and multi-task learning on
correlated phenotypes.
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Purpose

Deep learning (DL) methods are becoming increasingly common in biological
research. While powerful in some contexts, it's often unclear what biological patterns
DL models end up learning and how much of an advantage they provide over simpler
alternatives. Such questions can be probed most efficiently in highly distilled,
simulated datasets, providing insight into the underlying behavior of DL models. Here
we tackle this task in the context of epistatic interactions in genotype-to-phenotype
mapping. We test the ability of a multilayer-perception (MLP) to beat conventional
linear regression in three in silico experiments meant to probe the behaviour of DL
across familiar quantitative genetics parameters space, namely numbers of QTLs,
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relative genetic variance components, and genetic correlations/pleiotropy among
phenotypes. Our results help give us intuition about when and where applying DL is
most likely to result in success in more complex, real-world biological datasets.

« Data from this pub is available on Zenodo.

. All associated code is available in this GitHub repository.

Background and goals

In recent years, deep learning (DL) has seen widespread adoption in biological
applications, from predicting gene expression and variant pathogenicity to capturing
the “language” of protein sequences [1][2][3]. It's becoming clear that, in some cases,
DL can outperform simpler statistical models. However, the reason for the success of
DL in biological applications is often less obvious. Predicting when and where applying
DL provides real benefits remains hard, especially in cases where the underlying
biological questions being modelled are poorly understood.

In this pub, we explore the utility of DL for one specific biological application,

modelling genotype-phenotype relationships. Conventional methods for mapping
genotype to phenotype based on linear regression have proven useful in a swath of
biological applications, from understanding and treating disease [4], to increasing the
efficiency of agricultural breeding [5], and understanding evolution [6]. Consequently,
DL has increasingly been applied to such genotype-phenotype mapping tasks. Some
of these efforts have resulted in significant improvements in genotype-phenotype
prediction accuracy (relative to linear regression), although results tend to be
phenotype and dataset-specific [7][8][9][10]. A significant number of studies, however,
report little apparent benefit to applying DL at all, if not a detriment [11][12][11][13][14]
[15]. Conveniently, the framework of quantitative genetics allows us to make
predictions about which phenotypic variance components DL models should be
capturing that linear models aren't, which provides a useful baseline for assessing the
behaviour of DL in this setting. Chief among these are nonlinear interactions that linear
models will miss, such as epistasis and genotype by environment effects.
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Epistatic interactions are perhaps the most poorly explored component of genotype-
to-phenotype maps. Most quantitative geneticists ignore epistasis. This might make
sense for certain study systems, for example, in human-like populations, most
phenotypic variation should be explainable by additive effects [16]. However, additive
effects can capture all manner of biological effects, converting biological epistasis to
statistical additivity [17]. Under the right conditions, a significant component of
phenotypic variance can be decomposed into statistical epistatic variance even under
the conventional quantitative genetics statistical framework [18]. This is consistent
with a vast array of studies on protein function, where beyond a handful of
substitutions, epistatic interactions become the dominant determinant of protein
fitness (e.g., see [19]). In short, it's almost certain that epistasis is a major driver of
phenotypic variation across the tree of life [20]. Building models geared towards
capturing epistatic effects is a critical step in building a fundamental understanding of
genotype-phenotype mappings.

The scattered array of results and efforts on applying DL to genotype-phenotype
mapping inspired us to ask a simple question: Can we understand when and where
DL models outperform linear regression in a GP context? We point this question
towards the problem of capturing epistasis. Our aim isn't biologically realistic
simulation per se. Rather, we use simplified datasets to probe the basic behaviour of
DL models with regard to being able to capture epistatic variance under conditions
where we know epistasis is statistically apparent. Our results illustrate the parameter
space under which DL models can capture epistasis in the convenient units of
classical quantitative genetics (relative variance components, numbers of QTLS,
numbers of samples, etc.).

Access our simulated data on Zenodo (DOI: 10.5281/zen0do0.15644565).
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The approach

Scaling experiment

Simulations

For our initial set of simulations probing the scaling behaviour of DL models, we did a
parameter sweep across 1) log-scaled number of simulated samples (from 103-106
individuals) and 2) Number of causal QTLs (16-6,326 bi-allelic loci). We tested each
sample size parameter with 10 causal QTL number parameters. We chose these QTL
numbers based on a scaling factor relating the number of possible pairwise QTL
interactions to the number of samples, defined by equation 1 below. A scaling of one
implies as many samples as possible pairs of QTLs, a scaling of 0.1implies 10x as
many samples as possible pairs of QTLs, a scaling of 10 implies 1/10 as many samples
as possible pairs, and so on:

: QTL,, 1
scaling = 5 . sample.

We tested the following 10 scaling factors (0.1, 0.2, 0.3, 0.5, 1, 2, 4, 7,12, 20), generating
datasets across both n > p and p < n regimes (with regard to numbers of epistatic
pairs). The actual number of QTLs used to achieve these scaling factors was
calculated using the following formula, rounding the output to the nearest even integer:

1+ \/ 1+ 8 - scaling - sample,,
2

QTL, =

This scaling provides a convenient way of generating combinations of sample size and
QTL numbers that probe informative and comparable parameter spaces across

simulations.

We used AlphaSimR (v1.61) to generate all simulated genotype-phenotype datasets. By
altering the relAA parameterinthe addTraitAE function, we generated five
independent phenotypes in each simulation run, ranging from purely additive to almost
fully epistatic (relAA values: O, 0.1, 0.5, 1, 3). This, in practice, resulted in a set of traits
that had the following relative additive variance (Va/Vg) components: 1, 0.8, 0.5, 0.3,
0.15. For simplicity, all phenotypes were scaled to have a mean of O and a variance of 1,



and had a broad sense heritability of ~0.99. We simulated haploid populations with no
genetic or demographic structure. Founder genomes were sampled using the

quickHaplo function, which generates a population with roughly 50/50 allele
frequencies (based on simple binomial sampling) and loci that are random with
respect to each other (i.e., no linkage disequilibrium). We then directly used the
genotypes and phenotypes of these founders for genomic prediction with no further
manipulation. We generated 10 replicates of the 103-10%4 sample simulations, five
replicates of the 10° sample simulations, and three replicates of the 108 sample
simulations, decreasing replicates in the larger simulations due to increasing model fit
times and reduced variability between simulation replicates.

Model fitting

We used two methods to fit linear regression models to provide a performance
baseline for more complex DL models. First, we used the RidgeCV model
implemented in scikit-learn (v1.5.1) to fit a ridge-regression model on each phenotype
independently. To evaluate model performance in a robust way, we randomly split the
data in a 15%-85% test-train split, determined the best tuning parameter A through
cross-validation, performed model fitting, and finally calculated Pearson's r on
predicted vs. true phenotypes in the test data subset. We repeated this process 10
times, taking the average Pearson’s r as the final model performance metric. This
approach is statistically analogous to performing rrBLUP, a classic genomic prediction
model framework used in the field of plant and animal breeding, where A is set
analytically through variance component decomposition.

While analytically fit penalized regression is the most obvious benchmark to use for DL
models, this family of models becomes hard to work with when sample sizes and
parameter numbers become large due to quadratically increasing computational
complexity. To manage this, we fit an approximation of ridge regression using
stochastic gradient descent. Briefly, we implemented a simple model with one linear
layer in PyTorch (v1.5.1) with a custom loss function consisting primarily of a mean
absolute error (MAE) loss, but with a Kullback-Leibler (KL) divergence component,
constraining the distribution of weights in the linear layer to match a prior based on the
normal distribution N(0,1). The KL divergence was computed as 0.5 x sum(weights?)
across all model parameters. The total loss then was a sum of these two components,
where we weighted the contribution of the KL divergence term through a tunable
parameter set to 0.1. We fit the model using stochastic gradient descent (learning rate



0.1) with the PyTorch ReduceLLROnPlateau scheduler that halved the learning rate after
three epochs without improvement in the validation loss. To prevent overfitting, we
implemented early stopping with a patience of 20 epochs and a minimum
improvement threshold of 0.001 on the validation loss. We found high concordance in
the performance of the stochastically fit linear model and the RidgeCV models we fit
on smaller datasets (108-10* samples) using a KL divergence loss weight of 0.1 (see
analysis in this supplementary notebook). As a result, we used this stochastically fit

linear model as the baseline for simulation runs across all our parameters.

Our deep learning model was constructed as a two-hidden-layer multilayer perceptron
(MLP) network. While this is a relatively simple architecture, MLPs can approximate any
function (linear or nonlinear) [21], making them amenable to learning epistatic
interactions, and fully connected feed-forward layers such as the ones we employ are
an essential component of many, more tailored DL models such as convolutional
neural networks and transformers [22][23]. We implemented the MLP model in
PyTorch (v1.5.1), with an architecture consisting of an input layer of size 2 x QTL, (one
per one-hot encoded QTL), followed by two hidden layers of size 4,096. After each
hidden layer, we applied batch normalization (with momentum parameter 0.8) followed
by leaky RelLU activation functions (negative slope 0.01). The output layer contained
five units (one per phenotype) with a linear activation function.

MLP training was performed with a batch size of 128 on an 85%-15% train-test data
split (the same split as for the linear stochastically fit models). We employed a learning
rate scheduling strategy using the PyTorch ReduceLROnPlateau scheduler that halved
the learning rate after three consecutive epochs without improvement in the validation
loss. For model training, we used the AdamW optimizer with an initial learning rate of
0.01and a weight decay coefficient of 1 x 10~° to mitigate overfitting. We implemented
an early stopping protocol that terminated training when the validation loss failed to
improve by at least 0.003 for 10 consecutive epochs, with an upper limit of 150 epochs.
We used a standard MAE loss term and evaluated final model performance on the test
set, reporting the Pearson correlation coefficient between predicted and actual
phenotypes as for the linear regression models. We initially experimented with
hyperparameter optimization for learning rate and hidden layer size values, but found
negligible effects on model performance across our simulation parameters.
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QTL “dilution” experiment

Ouir first follow-up experiment involved “diluting” a set of informative QTLs with
progressively increasing numbers of uninformative QTLs to test whether DL models
could still recover epistatic mappings when only a subset of loci is causal. We focused
on the 10%-sample scenario, as this was a large enough sample size to give reasonably
consistent simulation outputs but small enough to allow for rapid model fitting and
evaluation.

Simulations

As a control scenario, we chose 100 causal QTLs, a parameter space where 10%
samples provide enough data for a neural network to almost fully learn the G->P map
without overfitting. To these causal QTLs, we added 0, 150, 400, 650, 900, 2,400,
4,900, and 9,900 uninformative QTLs by manipulating the total number of markers
sampled when creating population founders, but retaining only 100 QTLs with
phenotypic effects. We only focused on epistatic traits with re1AA setto 0.5
(corresponding to a Va/Vg = 0.3) along with a purely additive trait ( ze1AA=0 , Va/Vg =1)
as a control. We generated five replicates of each simulation condition.

Model fitting

As afirst pass, we used the same RidgeCV model (implemented in scikit-learn) and
MLP (implemented in Pytorch) we used in the scaling experiment to compare linear
and DL model performance. The only modification to the training workflow was an
additional learning rate optimization step implemented in Optuna (v3.5.0) for the MLP
model. These analyses revealed the need to perform feature selection to improve
model performance when many uninformative QTLs are present.

Our simple approach to implementing this first trained a modified stochastically fit
linear model with a Laplace prior on the weights (approximating LASSO rather than
ridge regression) to enforce more sparsity in the linear layer weights, thereby providing
a simple way of extracting informative features (one-hot encoded QTLs in our case).
We used the same strategy of modifying the MAE loss with a KL divergence term,
using a weight of 0.001, keeping all other parameters unchanged. Selected features
exceeding an importance threshold (0.03) were retained and sorted by learned weight.

We then used hyperparameter optimization to simultaneously determine the optimal



number of features to retain and tune the learning rate [again implemented through
Optuna (v3.5.0) with 20 trials] based on validation loss in the MLP.

The final best feature set was then used to train two models: a pruned version of the
LASSO model and a pruned version of the MLP. Model performance was again
evaluated using Pearson's correlation between predicted and actual phenotypes in the
test data.

Genetic correlation experiment

Our second follow-up experiment involved testing how much model performance can
be improved when multiple genetically correlated traits are generated again using the

10%-sample scenario from the initial scaling experiment.

Simulations

We generated groups of traits with pleiotropic QTLs, varying the strength of pleiotropy
to generate groups of traits with varying strength of genetic correlation. We again
implemented this using the addTraitAE function in AlphaSimR by specifying a cross-
phenotype covariance matrix for both additive and epistatic QTL effects (using the
same covariance values for both effect types). We generated phenotype sets with QTL
effect covariance values of 0.25, 0.5, 0.75, and 0.95 for sets of both 10 and 100
phenotypes. Additionally, we created a control case of no pleiotropy/genetic
correlation by simply creating sets of randomly initialized traits through a for-loop. We
varied the number of causal QTLs from 100 to 1,000 to test if cross-phenotype genetic
correlations would allow models to learn effect sizes from more QTLs than is possible
for independent traits. Again, we only focused on epistatic traits with re1AA setto 0.5
(corresponding to a Va/Vg of 0.3) in a population of 104 samples. We generated five

replicates of each simulation condition.

Model fitting

For this experiment, we used the same cross-validated ridge regression and MLP
described in the previous experiments. We used Optuna to optimize the MLP's
learning rate through 10 trials, leaving all other hyperparameters as is. Model



performance was again evaluated using Pearson's correlation between predicted and
actual phenotypes in the test data.

Code, including all scripts necessary to reproduce our simulated data and
analyses, is available in our GitHub repo (DOI: 10.5281/zen0do.15659065).

Additional methods

We used Grammarly Business to help copyedit draft text to match Arcadia’s style. We
used Claude to help write code, review code, streamline and clarify text that we wrote,
and suggest relevant literature that we further reviewed and cited. We also used
ChatGPT to help find information during code review. We used arcadia-pycolor (v0.6.2)
[24] to generate figures before manual adjustment.

The results

We performed three simple in silico experiments to probe the ability of DL models to
capture patterns of statistical epistasis in genotype-to-phenotype prediction tasks.
The first "scaling" experiment establishes the baseline data requirements for DL
models to capture statistical epistasis across phenotypes of varying complexity. The
second "dilution" experiment tests how these scaling patterns change when causal
QTLs are mixed with uninformative ones, simulating more realistic genomic data. The
third "genetic correlation” experiment explores whether training on multiple correlated
phenotypes further alters the scaling behavior, adding one final dimension of
biological realism.

DL scaling experiment

In our first “scaling” experiment, we probed the most basic aspect of scaling one can
study in a G->P mapping context: How much data does a DL model need before it
starts outperforming a linear regression benchmark? The answer helps establish a
baseline for when we expect DL models to capture statistical epistasis. It also starts to
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give us insight into why DL models fail to provide an advantage in some G->P datasets
but not in others.

We tested model performance across a range of phenotype genetic architectures,
from purely additive (Va/Vg = 1) to almost fully epistatic (Va/Vg = 0.15). Causal QTL
number was chosen by adjusting for the number of possible epistatic QTL pairs. We
focused on pairwise interactions rather than additive terms, since the former grows
much faster than the latter as QTL nhumber increases. Our parameter selection
strategy involved sampling set ratios of possible QTL pairs to sample sizes, starting at
0.1x as many QTL pairs as samples, and finishing with 20 times as many QTL pairs as
samples (see “The approach” for more details).
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Figure 1



Scaling performance of a multilayer perceptron (MLP) in
the context of simulated genotype to phenotype
prediction.

Results shown for five phenotypes, ranging from purely
additive (Va/Vg = 1) to mostly epistatic (Va/Vg = 0.15), across
four dataset sample sizes (103-108), and various causal QTL
numbers (see methods).

(A) Relative test set prediction gain of MLP against a linear
regression benchmark vs. QTL number. Y-axis statistic
calculated as the difference in Pearson’s r between two
models normalized by the linear model's Pearson’s r. Dashed
line indicates model parity.

(B) Test set Pearson’s r for MLP only, plotted against scaled
number of QTLs. Scaling calculated as number of possible
pairwise QTL interactions divided by sample size. Dashed line
indicates parity between sample size and number of possible
epistatic interactions.

The DL model scaled in a surprisingly consistent fashion relative to the linear
benchmark. Regardless of sample size and trait architecture, the DL model tended to
exhibit two stable regimes. At small QTL numbers (QTL pairs << sample size), the DL
model learned to predict almost all epistatic and additive variance, outperforming the
linear benchmark. At large QTL numbers (QTL pairs > sample size), the DL model
shifted to learning additive effects only, approximating the performance of the linear
benchmark (Figure 1, A & B). Our results suggest a fairly simple rule of thumb: our DL
model starts to capture epistatic variance when there are at least 20% as many
training samples as possible QTL pairs (Figure 1, B). However, predictive performance
improves rapidly after this point, and most epistatic variance is explained only when
there are more training samples than epistatic features to learn. Our results are
considerably more variable across replicates from smaller sample sizes (particularly at
108 samples), but averaged across replicates, behaviour is consistent across all

sample sizes.

On the one hand, these results are somewhat encouraging. Even undern =p
conditions (with p referencing epistatic features rather than QTLs), DL can capture



epistatic variance — a regime where a linear model incorporating all pairwise
combinations might be theoretically solvable with regularization but would incur large
computational costs. On the other hand, given the number of genotyped QTLs vs. the
number of samples in most G->P mapping datasets, it's likely that in most cases DL
models won't provide a large difference in predictive power over a linear regression.
However, the setup we use is, of course, artificially distilled. All the QTLs we simulate
are causal, and we use a limited number of unrelated phenotypes, two conditions that
are rarely true in real-world G->P datasets. Given this, we wondered what would

happen if we relaxed these constraints to create more biologically realistic scenarios.

QTL dilution experiment

In the above experiment, all QTLs we simulated were informative. What happens to
scaling relationships if we introduce uninformative ones? We reasoned that this
“dilution” experiment would better reflect the structure of real phenotypes, which are
often only impacted by a fraction of the genome. This lets us test how scaling
behaviour can be managed in the case where we know some of the input data can be
ablated with little loss of information. Consequently, this experiment aims to expand
the parameter space where we expect DL models to outperform linear regression.

We focused on the base case of 104 samples, 100 causal QTLs, one fully additive trait
(Va/Vg = 1), and one highly epistatic trait (Va/Vg = 0.3). From our first scaling
experiment, we know that these parameters should allow a DL model to almost fully
capture all variance components of these phenotypes (scaling factor of ~0.5). We
progressively dilute these 100 causal QTLs with more and more uninformative QTLs
(from O to 9,900, resulting in 100-10,000 total QTLs) to mimic the basic structure of
many biological datasets where only a small subset of QTLs have large additive effect
sizes (and therefore are able to contribute substantially to epistatic variance).
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Figure 2

Performance of three genotype-phenotype models in predicting
phenotypes with progressively diluted causal QTLs.

Phenotype architecture always has 100 causal QTLs, starting with no additional
QTLs, and ending with 9,900 non-causal QTLs. Total QTL number for phenotypes
reported on top of each subplot. Two phenotypes simulated per condition, one
purely additive (Va/Vg = 1), one mostly epistatic (Va/Vg = 0.15). Three models are
compared: a simple MLP, a pruned Lasso regression model with low-weight
features removed, and a pruned MLP also trained on the same filtered features
as the Lasso model. Y-axis statistic is the difference in test set Pearson’s r
compared to a ridge regression benchmark, dashed line indicates model parity.

As afirst pass, we compared an unmodified version of the MLP from our scaling
experiment and cross-validated ridge regression on these QTL dilution datasets. We
found that DL models rapidly lost the ability to capture epistatic variance as
uninformative QTLs were added to the dataset (Figure 2). For the epistatic trait, DL
model performance worsened with 250 total QTLs, and effectively matched the linear
model at 750 QTLs and beyond. This indicated that, even though added QTLs were
uninformative, the unmodified DL model wasn't able to efficiently recover biological
signal to learn epistatic interactions. For the additive trait, both models were roughly



equivalent up until very large numbers of QTLs (10,000), where the linear model started
to outperform the DL model. While model performance did degrade rapidly with QTL
number, relative to the initial scaling experiment, the DL model continued
outperforming the linear model in a larger parameter space. For example, at 500
QTLs, the DL model was still demonstrating consistent benefit over the linear model.
This scenario has a scaling factor of ~12.5, which is much larger than the minimum
scaling factor of five identified in the first experiment.

Our results from the first scaling experiment strongly suggest that the datasets we're
simulating here should be sufficient for the DL model to learn all relevant biological
features (i.e., additive and epistatic effects of the causal QTLs). It follows then that if
we're able to bias the attention of the model to the relevant QTLs, we may be able to
recover even more epistatic variance. We experimented with several different
strategies for doing so, including adding an informational bottleneck in the first layer of
the DL model by reducing the number of neurons, iteratively pruning weak connections
in the first layer of the DL model, and iteratively training a LASSO regression model
with feature selection based on weight values. In the end, the simple strategy that we
found to work most consistently involved pretraining a LASSO regression model once
on all QTLs to determine feature importance (ranking QTLs by learned weight), and
then using Optuna to determine the number of features to prune from the dataset

based on DL test set performance with various QTL number cutoffs.

Pruning uninformative QTLs improved epistatic trait prediction for both linear and DL
models in simulation replicates with 750 or more QTLs. This illustrates the overall
benefits of input filtering through feature selection for any type of model (Figure 2).
Compared to the pruned linear model, the pruned DL model showed evidence of
superior performance for epistatic traits at intermediate QTL numbers (750-1,000),
suggesting that some (but not all) epistatic variance can be recovered from a subset of
informative QTLs using feature selection. However, at very large QTL numbers (>
5,000), there was no appreciable difference between the pruned linear and DL
models, indicating that our strategy likely doesn't scale well as the number of
uninformative markers approaches the sample size. Despite this, the pruning strategy
further pushes the parameter space where a DL model can outperform linear
regression to an impressive scaling factor of ~50, an almost 10x improvement over the
first scaling experiment.

These results demonstrate that DL models might be able to capture epistasis when
trained on more QTLs than our first scaling experiment suggested. This is particularly



true if the training data are enriched for informative QTLs. However, there's another
major source of statistical power that might alter the scaling behaviour of DL models:
genetic correlations between multiple phenotypes. In the next experiment, we test

how such a scenario might further alter DL model scaling behavior.

Genetic correlation experiment

In our third “genetic correlation” experiment, we probed how the scaling relationship
between QTL number and sample size changes when models are trained on multiple
genetically correlated phenotypes. This experiment injects a new axis of biological
realism into our scaling tests; that organismal phenotypes aren't random with respect
to each other due to pleiotropy at causal QTLs.

We again focused on the base case of 10% samples and 100 causal QTLs, simulating
only epistatic traits (Va/Vg = 0.3). We varied the strength of genetic correlation among
these traits by adjusting the pleiotropic correlation of causal QTL effect sizes (for both
additive and epistatic effects), ranging the strength of correlation from O (independent
phenotypes) to 0.95 (almost perfect phenotypic correlation). We tested if having 10 or
100 correlated traits allowed our DL model to capture epistatic variance at larger QTL
numbers (200-1,000) than possible for pleiotropically uncorrelated phenotypes.



Trait # =10 Trait # = 100

Pleiotropy
1.0 A [Je.e B

[J6.6e5
9.8 me.25 ] H I
ool + Wo.75 |

*+ mo.os

(o] (o]
N &
—im—

Relative difference (MLP - linear)

|
(o)
N

(o)
(o)
T
1
I
|
]
1
I
]
1
1
I
]
1
I
—m-
—m-
]
¥
_'H
]
T
]
I
I
]
]
I
|
]
1
—mL
] —+
*._Lm
—m-
—m
—m+
]
=)
——
]

Figure 3

Effect of genetic correlations among phenotypes for MLP prediction

performance relative to a linear model benchmark.

Epistatic phenotypes simulated (Va/Vg = 0.15) with progressively larger numbers
of causal QTLs (x-axis). Phenotypes range from independent (pleiotropy in QTL
effect sizes = 0) to almost perfectly correlated (pleiotropy in QTL effect sizes =
0.95). Y-axis statistic is the difference in test set Pearson’s r compared to a ridge
regression benchmark averaged across all phenotypes in every simulation

replicate. Dashed line indicates model parity.

(A) 10 correlated phenotypes simulated.

(B) 100 correlated phenotypes simulated.

We found that multi-task learning on genetically correlated traits could indeed aid DL
models in learning to capture epistatic variance. However, the magnitude of this
benefit was sensitive to QTL number and number of phenotypes. In almost all cases,
we found that the DL model outperformed ridge regression for phenotypes with 300
QTLs or fewer, indicating that in these scenarios the model was able to learn to recover
some signal of epistasis (Figure 3, A & B), echoing results from our scaling experiment.

When examining scenarios with few QTLs, we observed that, peculiarly, DL models
performed better with low levels of genetic correlation (0.05-0.25) between traits.
However, this effect is likely an artifact of our simulation design rather than a



biologically meaningful pattern. This happens because our simulation framework had
to distribute correlated effects across a limited number of QTLs for many traits,
creating an unusual information structure. In the low correlation settings (e.g., 0.05), if a
QTL strongly affected one trait, it would typically have minimal effect on other traits — a
pattern that becomes more pronounced with fewer QTLs and more traits. This artificial
pattern diminishes in scenarios with more QTLs and fewer traits. While these nonlinear
relationships aren't detected by simple linear models, our DL model could exploit this
hidden structure. To address this issue, our control condition used independently
generated traits rather than traits with pre-specified correlation structures. Since this
pattern is a simulation artifact rather than a biological insight, we focus our
interpretation on the general difference between conditions with and without genetic
correlation between traits.

For both 10-trait and 100-trait simulations, pleiotropy appeared to boost DL model
performance modestly only for small numbers of QTLS (100-300) with rapidly
diminishing returns (Figure 3, A & B). For large numbers of QTLs (500-1,000), it
appears yet again that the DL model switches to capturing additive effects, leading to
overall slightly subpar performance relative to the linear benchmark, with pleiotropy
only providing a minor benefit in the 100-trait simulations. The primary benefit of multi-
task learning in this setting seems to be a boost in model performance whenit'sin a
parameter space where it would be capturing epistatic variance, even on a single trait,
rather than a wholesale shift in scaling relationships, as in our dilution experiment.

Focusing on the simulations with 300-1,000 QTLs and 10 traits, where pleiotropy
seems to benefit DL model performance but the statistical artifact we pointed out
earlier seems minimal, we note that even moderate levels of pleiotropic genetic
correlation (e.g., 0.25) appear to enhance prediction accuracy. This is an encouraging
result, as it suggests that multi-task learning on even moderately genetically
correlated phenotypes is a fruitful approach for enhancing DL model success. This
echoes our previous work with phenotype-phenotype autoencoders [25], and further
reinforces our suggestion to take advantage of phenotypic mutual information. The
benefits of multi-task learning have been well established in the machine learning
literature [26][27], and have been shown to help in a genomic prediction context for
both linear regression [28] and deep learning [8]. Consequently, a thorough
examination of the strategy for which and how many phenotypes to gather data on
when designing experiments will be helpful for gaining as much performance as
possible from DL models aimed at capturing epistasis.



Access our simulated data on Zenodo (DOI: 10.5281/zenod0.15644565).

Key takeaways

Our in silico experiments demonstrate that deep learning (DL) models can capture
complex genetic interactions (epistasis) that traditional linear models miss, but only
under specific conditions. We found that DL models begin to learn epistatic
interactions when training samples reach at least 20% of the possible pairwise
genetic interactions, with rapid improvement as more training data was added.
However, these scaling relationships are more permissive when only a subset of
genetic markers are causal — a common scenario in real-world biological data.
Strategic feature selection and analyzing multiple related traits simultaneously can be
used to further boost model performance. These findings help us understand why DL
has shown mixed results in genomic prediction tasks. They also provide practical
guidelines for when to use DL. Studies considering multiple related phenotypes,
populations with genetic structure, and adequate sample sizes are most likely to
benefit.

Next steps

Our results have several implications for using DL models in genotype-to-phenotype
mapping tasks. First, our scaling data across all experiments imply that efforts to apply
DL to n < p datasets (treating all possible epistatic interactions as p) will be
challenging. DL will likely only provide a benefit in datasets with very large sample sizes
if substantial statistical epistatic variance is present in the phenotypes of interest. Our
dilution results highlight the value of constraining the training data for model
performance. Conventional wisdom in fields like breeding is to use all available
markers, as regularized linear models generally perform well for phenotypic prediction
inn > p regimes [29][30] and this strategy allows for fine-scale tagging of haplotypic
structure. However, if we're interested in using DL models to capture epistatic
interactions, such a strategy fails as the number of interactions among input QTLs
scales roughly exponentially. Consequently, DL models seem to benefit when
constraints can be placed on their search space.


https://doi.org/10.5281/zenodo.15644565

For example, convolution has proven to be remarkably effective in the field of
computer vision, as it guides DL models to learn features by first looking at the local
informational context in images before scaling upwards to longer-range, more abstract
patterns [23][31]. Our results highlight that the key problem is figuring out how we can
apply such search space constraints in the context of biological G-P mapping. An
obvious first step is the one we have employed in our dilution experiment: only use
informative QTLs when training a model. Another existing strategy that's often
employed in the genomic prediction DL literature is to use convolution across
neighboring loci to capture and summarize local LD, thereby reducing the number of
input features for downstream model use [10][13][9]1[14]. This may be valid for
achieving constraint with one major caveat from the perspective of epistasis. Epistasis
manifests as the interaction between two (or more) loci. As a result, any noise with
regard to genotypic state at the interacting loci will be especially harmful for prediction
accuracy (as error will be compounded across multiple loci). Consequently, it’s unclear
a priori if convolution, which will tend to smooth out individual genotypic signals across
a chromosomal window, will always be the best approach for reducing the number of
learnable features. In some cases, LD may be strong enough in a local window that
convolution reduces dimensionality without much penalty on recovering epistasis, but
future simulations will be needed to determine when this is the case.

One complementary strategy for inducing informative limits in the search space of DL
model training would be to inject biologically informed constraints into model training.
Several previous studies have attempted this through means such as encoding
protein-protein interactions using graph neural networks [32] or embedding of KEGG
pathways in MLP models [33]. More work, however, will be needed to evaluate which
databases of biological interaction are most useful in guiding DL model training
relative to standard regularized linear model baselines.

Given our findings, which G->P datasets do we expect to be well-suited to DL model
training? Datasets such as F1 QTL mapping populations are probably the best suited
for such tasks. While the number of polymorphic markers in F1 populations is often
larger than the dataset size, the effective number of independent markers is much
smaller due to the clustering of markers into tight linkage blocks, a form of structure
that should be very amenable to local convolution. As a concrete example, we point to
a 100k strain, ~1,500 marker, yeast F1 population where DL models have consistently
outperformed simple linear regression [34][35][8]. This is also partly true in large
commercial agricultural breeding datasets, which consist of highly structured

populations and are also the product of controlled crosses, but ultimately will depend



on the exact scale at which linkage blocks occur. In some instances, DL has been
shown to outperform linear regression in agricultural genomic prediction tasks,
although results are generally on a phenotype-by-phenotype basis and are likely
related to variance component differences [10][9][13]. Finally, although difficult, it's
possible that for certain phenotypes in human mapping populations, such as disease
state, DL models may still outperform linear regression depending on the genetic
architecture [20]. That is, if epistasis between a small number of loci is important in
determining disease, our results suggest that DL models may provide a boost to
predictive performance, particularly if coupled with feature selection. This tracks with
some results on genomic prediction of diseases such as cardiac hypertrophy using
machine learning in UK Biobank data [36].

While this work begins to paint a picture of when DL models might add benefits in
genotype-phenotype mapping, the experiments we use are simple, and our results are
almost certainly liberal. For example, adding environmental noise, more realistic
genetic structure, and measurement error will likely require more training data for DL
models to maintain predictive performance. Future simulation work should explore the
exact nature of these relationships to build a more accurate picture of model
performance in realistic data regimes. We also used a very simple MLP as our focal DL
model. We felt this was appropriate, both because fully connected feed-forward layers
such as the one our MLP is constructed with are the basis for most DL model
architectures, and because this architecture seems to match the relative simplicity of
our simulations. It's possible that more advanced model architectures, such as those
based on the transformer architecture, may outperform our simple model. It'll be
interesting to perform the benchmarks in this pub with this and other architectures.

In conclusion, our work tackles the ambiguous landscape of DL applications in
genotype-phenotype mapping, revealing specific data regimes and experimental
designs where these models offer genuine advantages over traditional approaches. By
quantifying the relationships between sample size, genetic architecture complexity,
and model performance, we've moved closer toward a more nuanced understanding
of the potential benefits of DL in a dataset-agnostic way. We hope our philosophy of
simple but targeted simulation provides a useful framework for developing specialized
architectures and training strategies tailored to the unique challenges of biological
data, ultimately bridging the gap between computational efficiency and biological
interpretability in the quest to decode the genetic basis of complex traits.
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