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The known protein
universeis
phylogenetically biased

Many protein prediction and design models rely on evolutionary
comparisons. We show that popular databases are phylogenetically
biased, influencing the statistical utility of the known protein universe
in important ways.
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Purpose

Prediction and de novo generation of proteins is rapidly advancing. Much recent work
relies on the comparison of diverse proteins — taken from massive public databases —
to learn the evolutionary constraints on protein feature variation. By training on
hundreds of millions of proteins, these models learn and, at least theoretically,
generate beyond the structure of the “known protein universe.” Central to this
endeavor is the idea that the current “known protein universe” is sufficient for learning,
and then implementing, the rules through which evolution has designed proteins.

Here, we explore the phylogenetic makeup of all 214 million proteins in the AlphaFold
database (AFDB). We find strong phylogenetic biases in the AFDB. These biases are
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associated with variation in prediction accuracy, influence the outcomes of
downstream protein structural clustering tasks, and, when controlled for, greatly
constrain the evolutionary diversity of this representation of the known protein

universe.

These findings help delineate some of the promise and perils of evolution-informed
protein models and should be relevant to researchers interested in the prediction and
design of proteins.

« All code generated and used for the pub is available in this GitHub repository,

including scripts for accessing data, performing analyses, and generating all figures.

Background and goals

We are entering an era of de novo biological design [1]. The application of machine
learning/Al models to large biological datasets, it is believed, will unlock the potential
to generate novel biological components not found in nature [2][3]. At the vanguard of
this anticipated paradigm shift is the field of protein design. Models that can generate
protein sequences and structures have rapidly advanced in recent years, attracting
substantial scientific and financial interest [4].

Proteins are appealing targets of generative design for several reasons. Like human
language, proteins are information-complete, encoding their structure and function in
amino acid sequences [5]. In addition, the sequences and structures of many proteins
are available in public resources [6]. The sheer abundance and diversity of protein
data has motivated the idea that we are on the brink of learning comprehensive
generative rules for the “known protein universe” [7].

The advent of protein structure prediction algorithms significantly catalyzed efforts to
leverage the known protein universe. Approaches such as AlphaFold [8], ESMFold [9],
and RoseTTAFold [10] contributed several key ingredients that laid the foundation for
generative protein design models: in silico metrics for scoring protein prediction,
abundant and re-usable structural training data [11], and, importantly, an appreciation
for leveraging the evolutionary diversity of proteins [8]. Indeed, though models vary
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broadly (e.g., in architecture, type of training data, goals), almost all are based on a
common assumption: the rules of biological design will fall out of evolutionary
comparisons [12].

This assumption is based on another: the sequences and structures available in 2024
are sufficient for learning general rules of protein design. While the amount of available
protein data is indeed massive, it's important to remember that public protein
databases grew randomly over time. There was no top-down roadmap to guide optimal
sampling across the evolutionary diversity of proteins. Despite this, models have
begun to assume that these databases define the true distributions of naturally
occurring proteins [13][14]. Recent work has shown that this assumption can be
problematic. Unequal sampling of proteins has been found to bias the behavior of
protein language models; species that are better represented in training data have an
outsized influence on generated proteins, limiting the contributions of rarer species
and sequences [14].

These findings highlight the fact that training data distribution is an important influence
on the behavior of at least some protein models. Better characterizing the underlying
distributions of training data would therefore be useful for understanding the potentials
and limitations of protein prediction and design. Luckily proteins differ from many
other types of training data — which can be hard to to characterize — in that we know
the generative process underlying their sequence and structure: evolution. Even more
luckily, the generative process of evolution leaves behind traceable signatures in the
form of phylogeny.

We decided to see how much we might learn about the distribution of the known
protein universe through the lens of phylogenetics. Have proteins been evenly
sampled across the tree of life? Does the phylogenetic distribution of proteins
influence model prediction? How much protein diversity have we actually sampled and
is it universal? We reasoned that answers to these questions would contextualize
current possibilities for protein models and provide guidelines for better leveraging
evolutionary information in their creation.



The approach

Data

We downloaded AlphaFold database (AFDB) structural identities, cluster
designations, and associated metadata from the Foldseek web server [15].

We downloaded Protein Data Bank (PDB) statistics from the PDB website.

We collected species taxonomies from the NCBI Taxonomy database [16]. We
accessed genome statistics from the NCBI Genome database.

The multi-domain phylogeny we used in all analyses was provided via personal
communication from TimeTree [12] developers.

Measuring taxonomic completeness

We used the multi-domain scale phylogeny [12] as the basis for calculating taxonomic
completeness measurements. Given that the identification and estimation of species
diversity is more volatile than higher taxonomic levels, we measured taxonomic
completeness by the diversity of families within each phylum of the phylogeny. To do
so, we created a family-level phylogeny by randomly choosing a single species from
each family and reduced the tree using the keep.tip functioninthe R package ape

[17].

The procedure for calculating taxonomic completeness was as follows. First, species
within the phylogeny that contributed at least one protein structure to the AFDB were
identified. These species were then associated with their family and phyla
classifications. Using these classifications, we then identified the families present in
the AFDB for each phylum. The most recent common ancestor of each phylum
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( getMRCA function in ape) was identified and used to extract a subtree for all phyla
(extract.clade function in ape). Family-level presence/absence in the AFDB was
represented as a binary vector and used to measure Faith’s phylogenetic diversity ( pPD
function in the R package Picante [18]) for each phylum. Taxonomic completeness was
then calculated by normalizing the phylogenetic diversity of families within the AFDB
by the total phylogenetic diversity of each phylum. The distribution of taxonomic
completeness across the phylogeny was visualized using the contmap functioninthe
R package phytools [19].

This full procedure is available via the function clade_PD inthe GitHub
repository associated with this pub.

The distributions of domain-level taxonomic completeness were statistically
compared using Dunn’s test. The association between phylogenetic distance, number
of families, and taxonomic completeness for each phylum was assessed by creating a
linear model using the 1m functioninR.

Analyzing Foldseek representative proteins

The taxonomic completeness of Foldseek representative proteins was assessed using

the method described above. Representative proteins were associated with their

taxonomic classifications, which were then used to calculate family-level diversity per
phylum (as was done with the AFDB in Figure 3). The results were visualized using the
contmap function in the R package phytools, as above.

We assessed phylogenetic influences on the relationship between taxonomic
completeness in the AFDB and Foldseek clusters using a phylogenetic generalized
least squares (PGLS) regression. First, a variance-covariance matrix capturing
phylogenetic relationships was calculated using the function comparative.data inthe
R package caper [20]. The PGLS was then constructed using the function pgls in
caper (using maximum likelihood for branch length optimization).

The relationship between species abundance, pLDDT, and Foldseek clustering
outcomes was first assessed by calculating representative protein number, total
protein number in the AFDB, and mean pLDDT for each species. The relationship
between total protein number in the AFDB and mean pLDDT was measured using
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Spearman correlation. Spearman correlations were calculated over a range of cutoffs
corresponding to minimum representative protein number (the distributions of which
are presented in Figure 4, A). The distributions of pLDDT across domains were

statistically compared using Dunn’s test.

Assessing the effects of data balancing

The effects of data balancing were simulated by testing a range of protein sample
sizes. Given the diversity of sampling across species in the AFDB, increasingly
conservative sampling (i.e., requiring a greater number of proteins per species) has an
inherent filtering effect on the phylogenetic diversity of the available data.

The specific effects of filtering were assessed by calculating Faith’s phylogenetic
diversity (using clade_PD ) of species contributing at least n proteins to the AFDB over
a range of minimum values (from O to 20,000 proteins). The distribution of these
measurements is presented in Figure 5, A. Taxa diversity was also assessed at each
cutoff by calculating the proportion of taxa left as a function of the total number for
each level of the taxonomic hierarchy (as in Figure 5, B). The percent of cluster space

was calculated by identifying all the number of unique clusters represented at each
cutoff, divided by the total number of Foldseek clusters (as in Figure 5, C).

To assess per-species sampling completeness, we calculated the ratio between
protein n in the AFDB and the total number of proteins per species in the NCBI
Genome database. Given the broad dynamic range of this value — referred to as

“protein ratio” in the results section — its logarithm was used for analyses. We

compared the relationship between protein ratio and mean pLDDT over a range of
minimum protein numbers (Figure 6) and visualized the results using contour plots via

the R function contour .

All code generated and used for the pub is available in this GitHub repository

(DOI: 10.5281/zen0do0.13145188), including scripts for accessing data, performing

analyses, and generating all figures.
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The results

Protein databases are taxonomically biased

We first wanted to understand the basic taxonomic makeup of the known protein
universe. A straightforward approach to this is to measure the number of protein
structures in the database that are contributed by each species. Visual inspection
demonstrated that, in both the Protein Data Bank (PDB) and AlphaFold database
(AFDB), a small number of species represented orders of magnitude more proteins
than all others (Figure 1, A-B). In the PDB, these structures were dominated by
eukaryotic samples (likely owing to the bias toward solving human protein structures)
(Figure 1, A), while the AFDB was weighted toward prokaryotes (likely owing to the bias
toward sequence bacterial genomes) (Figure 1, B). Despite domain-level differences,
both databases were associated with strongly left-shifted cumulative distributions,
indicating that a significant proportion of their proteins come from a very small number
of species (Figure 1, C). Gross taxonomic biases in species sampling therefore exist in
the PDB and AFDB (this has also been noted about UniProt and other databases [14]).
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Figure1

Species-level distributions of proteins in public databases.

(A) Circular packing plot of protein number per species in the
Protein Data Bank (PDB). Circle diameter corresponds to protein
number. Circles are colored by domain (green = eukaryotes; pink =
bacteria; purple = archaea). The pie chart in the upper right corner
the proportion of the database represented by each domain.

(B) Circular packing plot of protein number per species in the
AlphaFold database (AFDB).

(C) Cumulative distributions of per-species protein number in the
PDB (orange) and AFDB (blue).

What is the structure of these biases? Are they randomly distributed? Or are coherent
groups of species well-represented and others not? To explore this, we measured how
well-sampled phyla were in the AFDB using the complete TimeTree of Life phylogeny
[12]. We assessed this “taxonomic completeness” by analyzing the ratio of observed
and total possible phylogenetic diversity within each phylum (Figure 2, A; see
Approach for details). We hypothesized that, if species were randomly sampled across
the tree of life (ToL), the distribution of taxonomic completeness would be at least
somewhat uniform across phyla. Conversely, strong taxonomic biases might lead to a
strongly skewed distribution with only a few phyla well-represented.
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Taxonomic completeness of the AFDB.

(A) Graphical depiction of the approach used here to calculate
taxonomic completeness.

(B) Taxonomic completeness of AFDB phyla. Domains are labeled
on the right (“Ar” = archaea).

(C) Violin plot of taxonomic completeness distributions across
domains of life. (** = p < 0.0001; Dunn’s test).

A quick note (and a bit of conceptual framing) before proceeding. All analyses
presented hereafter explore patterns and distributions of what is currently known
about the diversity of, and relationships among, species across the ToL. It’s important
to remember that what is known is a subset of what actually exists (i.e., the actual
structure and composition of the ToL). The two should not be confused. A small
example: > 1,300 bacterial phyla likely exist, the vast majority of which are uncultured
and uncharacterized [21]. In this pub, we have phylogenetic data for 26 bacterial phyla.
Therefore, any conclusions we make about taxonomic sampling concern phyla that
have been sequenced and are at least somewhat characterized. To reiterate, the goal
here is to understand the evolutionary structure of protein databases to better
leverage them for training, prediction, and generation. Any claims about the structure
of evolution itself should be interpreted within this context.

The distribution of taxonomic completeness was roughly bimodal across the ToL
(Figure 2, B). Some phyla were completely sampled (18/77 phyla; 23%). Many others
were not represented (25/77 phyla; 32%) and close to half were somewhat complete



(34/77 phyla; 44%). The most obvious trend was at the domain level: prokaryotic phyla
(bacteria and archaea) were significantly better sampled than their eukaryotic
counterparts (Figure 2, B-C; p = 0.0004, Dunn’s test). Within eukaryotes, phyla were
highly variable. Better-sampled phyla included fungi, Archaeplastida (land plants,
green algae, red algae), and a handful of better-studied protist phyla (e.g., pathogenic
oomycetes and diatoms). Many metazoan phyla were poorly sampled. Bacterial phyla
that were not well represented included Fusobacteriota, Chlorobiota, Ignavibacteriota,
Balneolata, Candidatus Melainabacteria, and Thermomicrobiota.

What accounts for this sampling disparity? Intuitively, the sheer size of phyla (i.e., the
number of families per phylum) is a straightforward explanatory factor. Indeed, phylum
size was significantly predictive of taxonomic completeness (linear regression; t-value
= -2.2, p = 0.03). However, the model itself was not very explanatory (2 = 0.09). This
suggests that other factors contribute to taxonomic sampling variation, the true
landscape of which is likely a byproduct of both biological and historical influences. For
example, the two largest phyla (Arthropoda, 1,574 families; Chordata, 1,060 families) —
despite being some of the most studied in all of biology — each have modest levels of
taxonomic completeness (0.51 and 0.64, respectively). These estimates are likely more
accurate for these phyla than less well-studied ones. In general there may not be
enough information to estimate what we have left to uncover for many phyla (as is very
likely the case among many bacterial phyla). Therefore, sampling may be influenced as
much by where biologists have decided to place their attention as by the complexity of
taxonomy itself. Thus the current state of affairs: eukaryotes are substantially well-
sampled within the known organismal universe, yet the known universe is likely itself
just a fraction of the real diversity of life.

Biases in the AFDB are recapitulated by
clustering methods

How might biases in database structure influence downstream applications? Given
that structural clustering is among the more common uses of protein databases, we
decided to assess one of the largest structural clustering datasets currently available:
the Foldseek cluster database [7]. The Foldseek database comprises ~2.3 million
clusters computed from 214 million AFDB proteins using a highly efficient structural
clustering workflow [7]. Structural clustering is putatively able to identify remotely
related proteins, allowing aspects of protein family evolution and function to be



potentially gleaned. If it is indeed true that a substantial portion of protein structural
space has been sampled — as is often assumed — then large-scale protein cluster
databases may be approaching comprehensive representation of protein structural

diversity (and, hence, functions) across the tree of life [7]1[22].

A key step in the Foldseek workflow is the identification of “representative proteins”
after an initial sequence-based clustering step (via the MMseqs2 algorithm) [23].
Proteins with the highest prediction confidence (pLDDT; predicted local distance
difference test) within the MMseqs2 clusters are chosen as representatives. These
representative proteins are then used as input to Foldseek [15] which, using structural
comparisons, identifies a smaller subset of clusters. Given the importance of these
proteins for constructing the final clusters, we wondered the extent to which
taxonomic bias might be present among the representatives. We hypothesized that, if
taxonomic biases in the AFDB data influence prediction accuracy of the AlphaFold
model, then these biases should also be present in the Foldseek representatives. Put
another way, if there is a relationship between the number of proteins per taxa in the
AFDB and pLDDT, taxa that are better represented in the AFDB should also be more
likely to occur in the representative protein set.

We found that the taxonomic distribution of Foldseek representatives very closely
mirrored that of the full AFDB dataset (Figure 3, A). Phyla that were well represented in
the AFDB were, by and large, also well sampled among the representative proteins

across the different domains of life (Figure 3, A). There was a strong relationship
between the AFDB and Foldseek with respect to the number of proteins per phylum
within each (R? = 0.92, linear regression; Figure 3, B). The distributions of taxonomic

completeness were also strongly related (R2 = 0.92, linear regression; Figure 3, C,
black line). Notably, the strength of this relationship was consistent even when
accounting for phylogeny via a phylogenetic generalized least squares (PGLS)
regression (R2 = 0.92, PGLS; Figure 3, C, red line), reinforcing the idea that taxonomic
biases in the AFDB are non-randomly distributed. Furthermore, the non-random
taxonomic makeup of the AFDB appears to strongly influence pLDDT-based
representative protein selection as implemented in methods such as Foldseek.
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Figure 3

Comparing completeness of the AFDB and Foldseek.

(A) Comparison of the phylogenetic distribution of taxonomic
completeness within the AFDB (left) and among Foldseek
representative proteins (right).

(B) Distribution of the number of proteins within each phylum for the

AFDB and Foldseek (linear regression R?).

(C) Distribution of per-phylum taxonomic completeness within the
AFDB and among Foldseek representative clusters (black line =
linear regression; red line = PGLS).

As mentioned previously, it’s possible that the concordance between AFDB and
Foldseek representative proteins occurs because pLDDT is influenced by taxonomic
biases. To explore this possibility, we compared species-level variation in pLDDT to the
distribution of representative protein numbers in Foldseek. We reasoned that if higher



pLDDT values are achieved by species with more proteins in the AFDB, then there
should be a linear relationship between these measures over the range of
representative protein numbers. Indeed, we found that representative protein number
was positively correlated with pLDDT (Figure 4, A; Spearman correlation). For example,
at a cutoff of 1,500 proteins/species this relationship displayed a plateau of Spearman
correlation ~0.7 (Figure 4, A). Interestingly, the correlation coefficients at cutoffs < 150

proteins were negative, suggesting that species contributing lower numbers of
proteins had disproportionately high pLDDT values, leading to negative coefficients.
Plotting joint distributions between pLDDT and protein number revealed that these
correlations were driven by a small number of bacterial species with many proteins
possessing mean pLDDT values > 70 (Figure 4, B). This reflects that pLDDT values
were stratified by domain: bacterial and archaeal species were associated with
significantly greater mean pLDDT than eukaryotic species (Figure 4, B-C; p < 0.0001
for both, Dunn'’s test). It's also notable that the shape of these relationships closely
mirrored those seen by Ding & Steinhardt [14] when comparing the Progen2 [24] and
ESM2 [9] predictions to the number of per-species input proteins.
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The relationship between training data structure and
prediction accuracy.

(A) Distribution of Spearman correlation coefficients over a range of
representative protein n cutoffs. The dotted line corresponds to the
cutoff exemplified in panels (B) and (C).

(B) The relationship between mean pLDDT of representative
proteins (y-axis) and number of proteins in the AFDB (x-axis). Points
are colored by domain. (Spearman correlation).

(C) Comparison of mean pLDDT across domains (** = p < 0.00071;

Dunn’s test).

Taken together, these results suggest that taxonomic biases covary with AlphaFold’s
pLDDT measurements and can impact downstream applications of AlphaFold that rely
on pLDDT, such as Foldseek. This impact can be seen through the strong
concordance between the taxonomic makeup of AlphaFold and the representative
proteins used in Foldseek’s clustering workflow (Figure 3). Notably, this also reflects
effects on the behavior of other protein prediction models (Progen2, ESM2) arising
from uneven species sampling [14]. In these cases, uneven sampling led to systematic
biases in the output of protein language models and negatively influenced aspects of
protein design [14]. A remedy for these issues is more intentional curation of protein
datasets [14]. With this in mind, we explored how curation of the AFDB would impact

the size of the known protein universe.



Data balancing greatly reduces the accessible
protein universe

Taxonomic biases in the AFDB are reflective of it being an imbalanced dataset wherein
certain classes — namely, taxa — disproportionately contribute. Dataset imbalances
can be handled in a variety of ways. A common (and straightforward) approach is
undersampling: even numbers of representatives are selected from each class in an
attempt to ensure equal contributions from each. Undersampling’s simplicity gives it a
general utility but also makes it prone to some undesirable behaviors that are worth
noting. For example, undersampling can lead to overfitting when working with small
datasets and can generate unrealistic representations when classes vary substantially
in size. This latter scenario may very well be the case here, as the upper limit of sample
sizes will be lower for bacteria (smaller genomes, fewer proteins) than eukaryotes
(bigger genomes, more proteins). Despite these caveats, we reasoned that
undersampling is likely to be implemented elsewhere as a means for controlling
phylogenetic bias and thus could provide a useful first approximation of the effects of
data balancing on the makeup of diversity within the AFDB.

To assess the impact of undersampling, we generated a series of balanced datasets
selecting partitions containing n proteins from each species (from 1to 20,000
proteins). Species were excluded if they did not have at least n proteins in the AFDB.
After exclusion, we calculated the phylogenetic diversity of species in each dataset
(see Approach).

Balancing had a substantial effect on phylogenetic diversity (Figure 5, A). For example,
the transition from a minimum protein n of 1to a minimum n of 2 generated a loss of
23% of phylogenetic diversity (Figure 5, A). A minimum n of 1000 represented 38% of
overall phylogenetic diversity in the AFDB (Figure 5, A). Phylogenetic diversity

plateaued around n = 5,000 at ~5% of diversity captured (Figure 5, A). Diversity was
most immediately lost at the species level: 48% of species were pruned when
requiring > 2 proteins/species (Figure 5, B). The species distribution was mirrored by
that of genera, with both plateauing at ~5% diversity when n = 5,000 (Figure 5, B).
Overall, each taxonomic category lost substantial diversity as dataset partition sizes
increased; less than half of phyla were represented when n = 5,000 (Figure 5, B). These
results indicate that a substantial majority of phylogenetic diversity contained in the
AFDB is driven by species associated with a small number protein structures, leading



to a rapid decrease in the size of the accessible protein universe after even modest
filtering.
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Effects of data balancing.

(A) Proportion of total phylogenetic diversity in the AFDB with
increasingly conservative data balancing. Point color corresponds
to phylogenetic diversity.

(B) Proportion of total diversity for each level of the taxonomic
hierarchy. Colors indicating taxonomic levels are indicated in the
upper right hand corner of the plot.

(C) Percentage of Foldseek clusters maintained with increasing
conservative data balancing. Point color corresponds to the
percentage of cluster space occupied at each cutoff.

We also assessed how data balancing affected the coverage of Foldseek cluster
space. While balancing did lead to a consistent decrease in cluster space (Figure 5, C),
the relationship was more modest than that observed with phylogenetic diversity
(Figure 5, A-B). This robustness to balancing makes sense given that more abundant
taxa drive the structure of Foldseek clusters while species with fewer proteins
contribute proportionally less (Figure 3). However, though more modest, balancing still
resulted in a relatively substantial decrease in the size of Foldseek cluster space, with
> 20% of size lost at n = 1,000 and > 50% at n = 5,000 (Figure 5, C). These patterns
further support the notion that Foldseek clusters recapitulate the taxonomic makeup
of the AFDB.



The data balancing tests described above were agnostic to the real variation in
proteome size among species within the AFDB. We hypothesized that, by accounting
for proteome size, we might gain an orthogonal view into the effects of taxonomic
biases on Foldseek clusters. Specifically, we were interested to see if species with
under/over-represented proteomes were better modeled by AFDB and/or contributed
more representative proteins in the Foldseek clustering workflow. To test this, we
calculated the ratio of AFDB protein number and proteome size for each species
(referred to as “protein ratio” in Figure 6). We then compared this protein ratio to the
mean pLDDT of each species’ representative proteins and analyzed this relationship
over a range of protein n cutoffs. This comparison allowed us to infer the effects of
prediction accuracy (pLDDT), AFDB representation, and proteome size over sets of
species that were increasingly influential on the structure of Foldseek clusters.

We noted a major difference in the behavior of eukaryotic and prokaryotic distributions
(Figure 6). While the distribution of eukaryotic species stayed relatively stable over the
range of cutoffs (Figure 6, A, i-vi), there was a substantial shift in the prokaryotic
distribution (Figure 6, A, i-vi). As cutoffs became more stringent, there was an

enrichment for species with very well-sampled proteomes and elevated mean pLDDT
measures (Figure 6, A, v-vi). This is again reflective of the strong concordance between

the taxonomic distribution of the AFDB and Foldseek representative proteins (Figure
3). It also demonstrates that these latent taxonomic biases are amplified with more
conservative data balancing requirements (i.e., larger n proteins per species).
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Data biases are amplified by balancing.

Contour plot comparing protein ratio (logarithm of the proportion of proteins in
the AFDB and proteins in proteome) and mean pLDDT of individual species
calculated over a range of cutoffs (from > 1 protein (i) to 2,000 proteins (vi).



Key takeaways

« Protein databases unevenly sample phylogenetic diversity (Figure 1)

« Sampling biases are taxonomically structured in the AFDB; established prokaryotic

phyla are significantly better sampled than eukaryotic phyla (Figure 2)
« Sampling biases are predictive of protein cluster composition (Figure 3)
« Better sampled species possess higher pLDDT values in the AFDB (Eigure 4)

« Data balancing leads to a substantial decrease in the phylogenetic diversity of the

known protein universe Figure 5)

- Data balancing amplifies phylogenetic disparities in AlphaFold performance (Figure
6)

Implications

This pub lays out approaches to characterizing the structure and biases of the known

protein universe. Given the broad scope of contemporary protein modeling, follow-up
efforts will inherently be multi-faceted. Below we describe the implications of greatest
interest to our work (and likely that of others).

Public protein databases are biased. The utility of protein models will therefore be
contingent on whether, and how, training data are curated. Furthermore, generalization
beyond natural protein distributions will likely be difficult without mitigating these
biases [14]. Importantly, though, curation won't be a panacea. As seen here, data
balancing decreased accessible phylogenetic diversity and exacerbated latent
taxonomic biases in AlphaFold2 prediction accuracy. Appreciation of these constraints
may substantially impact future model design, architecture, and implementation.

A simple example: prokaryotic proteins are better sampled in the AFDB than
eukaryotic proteins. Better sampling appears to be related to more confident
predictions (i.e., higher pLDDT). Better predictions lead to a disproportionate influence
on structural clustering. If not accounted for, this bias will likely be recapitulated in
other applications. Recognizing these constraints provides options. Treating
prokaryotes and eukaryotes independently may make sense in some cases.
Alternatively, the bias may be exploited to generate proteins possessing more



prokaryotic-like features. Whatever the goal, bias characterization should play a central
role in comparative approaches.

However, even with better curation and model design, there is reason to believe that
current approaches will continually fail to capture realistic evolutionary patterns. Most
models infer evolutionary patterns (via lengthy and expensive training) by treating
proteins as independent observations. This leads models to learn “star phylogenies”:
evolutionary hypotheses lacking the hierarchical relationships that are hallmarks of
natural diversification [25]. Crucially, these representations are very susceptible to a
phenomenon known as — in the language of evolutionary biologists — phylogenetic
non-independence [26].

Evolution generally functions through gradual changes. Closely related species are
likely to have been influenced by the same evolutionary events and, therefore, can be
expected to possess similar traits. Given this, the traits of related species cannot
readily be considered independent. Incorrect attribution of independence leads to the
presence of pseudoreplication (overestimation independent sample number), severely
limiting model power [27]. Models with pseudoreplication will fail to capture the true
structure of the dataset, leading to overfitting and a general lack of interpretability [26].

This may spell trouble for the future progress of protein prediction and design. The
known protein universe is already massive, encompassing hundreds of millions of data
points. It is (and has been) extremely tempting to believe that we can now learn — and
generalize beyond — the generative rules of protein evolution given the sheer volume
of the data. And why not? LLM-based chatbots such as ChatGPT achieve impressive
feats from similarly sized datasets, learning generative features of human syntax,
grammar, and semantics. Shouldn’t this be possible for biological sequences which, at

first blush, seem to be not very different from words?

Unmitigated non-independence and phylogenetic biases make this currently unlikely
for proteins. The known universe is effectively much smaller than appreciated. As
shown here, these patterns vary across taxa and are unevenly distributed across the
tree of life. Since the generalization of ML models is dependent on learning the true
distributions of underlying data, until addressed, these factors will likely cap the

generalizability of protein prediction and design.

There are some potential solutions. Future collection of protein data (i.e., sequences
and structures) should be done with the goal of optimizing biological diversity.
Undersampled, yet diverse, taxa should be prioritized across the ToL. Measures like



taxonomic completeness can help this type of “phylogenetic data engineering” by
helping prioritize efforts and measure progress. This type of targeted approach will
help us begin to infer the true distributions of naturally occurring proteins (or even,

simply, know if we are getting close).

Finally, it’s worth noting that the statistical power and limitations of any dataset are
determined by processes generating the data. For example, human language datasets
also display the type of pseudoreplication and non-independence inherent to
comparative biological data [28]. These are inborn features of language generation
that, when unaccounted for, likely limit the generalizability of linguistic models. Luckily,
the generative process underlying biological diversity is known: evolution. What’s
more, phylogeneticists have been refining and implementing models of diverse
evolutionary processes for decades. There are substantial opportunities to leverage
evolutionary approaches to confront the biases described here. In general, explicit
inclusion of phylogenetic information into protein models may reduce training cost,

improve model accuracy, and expand generalizability.
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