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Raman spectra reflect
complex phylogenetic
relationships

Even with many tools available, categorizing species is tough. We
used data from Raman spectroscopy, a form of label-free imaging, to
infer phylogenetic patterns among several dozen diverse microbial
taxa, offering a non-destructive and rapid way to dissect species
relationships.
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Purpose

Figuring out the relationships between organisms is an essential part of biological
investigation. To do so, researchers often rely on methods that are destructive (e.g.
DNA sequencing), require extensive tools (e.g. label-based imaging), or prior

knowledge (e.g. expert classification).

In this pub, we show that we can use Raman spectroscopy — a form of non-
destructive, label-free imaging — to infer complex phylogenetic relationships between
microbial organisms. Specifically, we find that distinct portions of Raman spectra
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reflect phylogenetic sighal and that this relationship is reflective of genomic
components.

These observations should be of interest to evolutionary biologists, ecologists, and,
broadly, researchers interested in extending the capacities of label-free imaging
methods.

- This pub is part of the platform effort, “Genetics: Decoding evolutionary drivers

across biology.” Visit the platform narrative for more background and context.

. All associated code is available in this GitHub repository.

- A full walkthrough of the code base for the framework appears in a companion
notebook.

Background and goals

Many roadblocks in biological research boil down to a single problem: not knowing
what you're looking at. Meaningful comparisons — be it microbes within a mixed
community or the cells of a heterogeneous tissue — are hard when samples are
morphologically indistinct, difficult to access, or exist in dense arrangements. To get
around this, biologists often employ next-generation sequencing (NGS) or label-based
imaging. However, these methods come with drawbacks. NGS-enabled phylogenetic
analyses can require significant time investment, are prone to various types of
systematic errors, and can be difficult to use when samples are mixed or composed of
hard-to-sort and/or uncharacterized organisms [1]. On the other hand, label-based
imaging can be destructive and is often limited to well-known molecules or species
that require prior characterization or evidence for use (which is often lacking in
evolutionary or ecological research) [2][3].

Label-free imaging methods using vibrational spectroscopy, such as Raman imaging,

offer promising alternatives for addressing a number of basic problems in biology [3]
[4]. Raman methods detect the presence of various chemical bonds via light
scattering, providing biochemical fingerprints that can be reflective of metabolism,
physiological state, cell type, or species [3]. Accordingly, it has been proposed that
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Raman methods could become important tools for identifying the provenance of living
organisms [S][6][71[8] and have already been leveraged to detect taxonomic patterns
in certain biological materials, such as bivalve shells [9] and animal fossilization
products [10]. Similarly, increasing numbers of studies have shown that Raman
spectra are amenable to species-specific classification using machine learning
approaches [3][6][7]. However, to our knowledge, no studies have explicitly tested the
utility of Raman spectra for identifying phylogenetic patterns or relationships between

species.

Establishing this link, or lack thereof, will be a crucial step if these tools are to be
broadly applied to evolutionary and ecological problems. With this in mind, we used a
publicly available dataset of Raman spectra from 30 clinically isolated microbial strains
[7], exploring the extent to which we could uncover phylogenetic relationships solely

from spectral data.

The approach

Detailed methods

Data

All data analyzed here were previously published and publicly available. Details and

experimental conditions can be found in the original publication, which used deep
learning to classify 30 clinically isolated strains of pathogenic bacteria and fungi [7].
Briefly, they obtained Raman spectra using a Horiba LabRAM HR Evolution Raman
microscope targeting monolayers of dried samples. They obtained spectra between
381.98 and 1792.4 cm~' and normalized by the maximum intensity to vary between O
and 1.
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Analysis

All associated code is available in this GitHub repository (DOI:
10.5281/zenodo.7872093) and we provide a code base walkthrough for the
framework in a companion notebook.

The suite of analyses presented here is available in a fully interactive and editable
notebook on GitHub. This notebook walks through the relevant code and
methodological considerations. Below is a brief, complementary methods overview:

We obtained data from the original publication via the Dropbox link provided on their
GitHub [7]. Depending on the analysis type, we used all replicates per strain (n = 100)
or strain-level means (see subsequent paragraphs). We excluded the species
Streptococcus agalactiae from all analyses based on what appeared to be an aberrant
spectral profile (see Figure 1).

First, we collected taxonomic classifications for each strain from the NCBI taxonomy
database [11]. Strain-specific classifications were compiled into a matrix in which each
column corresponds to a specific level of the taxonomic hierarchy (e.g. strain, species,
genus, etc.). We then used this matrix as input to generalized linear models (GLMs)
predicting spectral relationships among strains. We used PC1 from a principal
component analysis (PCA) of spectra across all replicates (n = 100/strain) as the
outcome variable given that it explained over 20% of variance in the data (explored in
more depth in Notebook 1). In total, we constructed eight GLMs, each for a specific
level of taxonomic classification. We compared model fits using the Bayesian
information criterion (BIC). We complemented these analyses by measuring the cosine
similarity among replicates within different taxonomic groupings. We measured cosine
similarity using the cosine function inthe R package LSA and calculated its variance
among taxonomic groupings.

To enable phylogenetic comparisons, we obtained a time-calibrated, species-level (n
=19 species) phylogenetic tree from timetree.org [12]. We then used this tree to
calculate phylogenetic signal as a function of spectral position. To do so, we used a
sliding window approach (width = 25 wavenumbers, stepsize = 1 wavenumber). Within
each window, we inferred phylogenetic signal of species-level mean spectra by
calculating Pagel’s A [13] using the phylosig function from the R package phylosig
[14]. We calculated the spectral distance between species using these same sliding
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windows, but, in place of Pagel’s lambda, we calculated the euclidean distance
between species within each window. We then time-calibrated spectral distances by
calculating the cophenetic distances between all species (essentially the dates at
which species are estimated to have diverged given the phylogenetic tree) using the
function cophenetic.phylo inthe R package ape [15]. We then matched species-
wise cophenetic distances with spectral distances, allowing two-dimensional
comparisons of these values. We used the window-based approach to calculate the
difference between window-based trees and the observed phylogenetic tree via the
Robinson-Foulds metric. We used the function TreeDistance inthe R package
TreeDist to infer the Robinson-Foulds metric [16].

Finally, we compared genome features to the patterns observed above by collecting
data from the NCBI Genome Database (Figure 1, C). We inferred the relationship
between genomic features and spectra using the window-based approach from
above. Within each window, we performed PCA on mean spectra and generated a GLM
using PC1 as the outcome and each genomic feature (e.g. GC content) as the predictor.
The outcome of this analysis was thus a continuous value representing the similarity
between spectral and genomic relationships. We then computed Pearson correlations
between these GLM fits and computed phylogenetic signal.

The results

Strain-level Raman spectra associate with
taxonomy

As mentioned in “The approach,” we obtained a publicly available dataset of Raman

spectra collected from 30 clinically isolated strains of bacteria and fungi (Figure 1). To
enable evolutionary comparisons, we identified the taxonomic classification for each
sample, from strain to domain (Figure 2, A). We reasoned that if spectra contain
meaningful phylogenetic information, then the similarity of strain-level spectra should
scale with taxonomy (i.e. genus-level spectra should be more similar than kingdom-
level spectra).
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Figure 1

Phylogenetic context of the dataset.

(A) Time-calibrated phylogeny of species considered in this study.
Species names are colored by genus. The number of strains per
species in the data set is indicated by the number in the grey box.

* = species not included in statistical analyses.

(B) Spectra distributions for each species in the study. Mean spectra
are indicated by the darker line, plotted over the spectra of all 100
replicated per species. AU = arbitrary units.

(C) Heatmap of genome statistics for each species.



To test this intuition, we analyzed how well taxonomic categories can predict spectral
measurements (see The approach). Specifically, we used generalized linear models

(GLMs) to assess the linear relationships between taxonomy and spectra and
assessed model fit using the Bayesian information criterion (BIC), a common metric for
comparing a set of models. Here, models with lower BIC are better able to predict
spectra. Strikingly, we found that the range of BIC values exactly mirrored the
taxonomic hierarchy (Figure 2, A-B). Strain identity best predicted the range of spectra
(BIC = 9,034), followed by species (BIC =10,974) (Figure 2, A). Interestingly, all other
taxonomic predictors — genus to kingdom — displayed similar model fits. We also saw
these patterns when analyzing spectral similarity (measured by cosine similarity)
(Figure 2, C), observing increasing amounts of variance as taxonomic granularity
decreased. These observations suggest that Raman spectra vary as a function of
taxonomic relationship and that strain and species-level signals are most strongly
encoded in spectral information.
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Raman spectra vary with taxonomy.

(A) Graphical depiction of the hierarchical relationships between

taxonomic classes used here.

(B) Distribution of the Bayesian information criterion (BIC) values for
generalized linear models (GLMs) comparing spectra and
taxonomic categories.

(C) Distribution of cosine similarity variance as a function of
taxonomic categories.



Evolutionary signals are position-specific
within spectra

The above observations indicate that, when considered in their totality, Raman spectra
vary as a function of taxonomy. Is this variation evenly distributed across spectra or
restricted to specific portions? If the former is true, then it would appear that variations
between species’ spectra arise from biochemical signatures too complex or nonlinear
to resolve solely from these data. In the latter scenario, specific molecular signatures
may drive spectral differences, hinting at some possibility of identifying biological
drivers of this measurement variation (via position-specific associations with
taxonomy).

We explored these possibilities by calculating phylogenetic signal (Pagel’s A) [13] — a
measure of how much species’ phenotypic and phylogenetic relationships match each

other — as a function of position in Raman spectra (for details see The approach). In

this framework, higher values of phylogenetic signal indicate that closer-related
species have more similar spectral measurements. Remarkably, we found increased
phylogenetic signal in a series of clear bands (Figure 3, A-C). These bands were
distributed across the spectral range (Figure 3, A), displayed an average width of 43
wavenumbers (standard deviation = 18 wavenumbers), and had maximum
phylogenetic signal values between 0.25 and 0.79. These observations support the
second scenario from above: Phylogenetic signal is unevenly distributed across
Raman spectra.

Given that the amount of phylogenetic signal varied across the observed bands, we
next wondered if this variation reflected the same, or different, evolutionary patterns.
There were several possibilities. On one hand, relationships between species
measurements could be identical across the spectrum. In this scenario, phylogenetic
signal would vary simply as a function of measurement differences going up and down.
On the other hand, it could be the case that species relationships change with
position, either subtly or strongly. In that case, phylogenetic signal may be associated
with a variety of species relationships, suggesting that Raman spectra reflect a more
complex landscape of evolutionary relationships.
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Evolutionary signals are position-specific within spectra.

(A) The phylogenetic signal distribution across the full Raman
spectrum. Calculated in 25 wavenumber-wide windows. The yellow
and purple dots mark example peaks discussed in the text.

(B) Heatmap of spectral distance. The y-axis corresponds to billions
of years, darker color corresponds to greater average distance
between species pairs as a function of divergence time. Black line
represents the time point at which the maximum spectral distance
for that position was measured.

(C) Distribution of distances between the phylogenetic tree and
trees made from spectral relationships within windows along the
spectrum. Tree distance corresponds to the Robinson-Foulds
metric. Colored bands below reflect common biomolecular
signatures in Raman spectra.
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To explore these possibilities, we calculated the spectral distance between species as
a function of evolutionary time (for details see The approach) and visualized the results

as a heatmap (Figure 3, B). Color shows the distance among spectra as a function of
evolutionary time (represented by the y-axis). We are essentially asking, for two
species that diverged X million years ago, how different are their spectra? We then
average these values over all of evolutionary time. We also plotted the time at which we
saw the greatest spectral difference for each position along the spectrum, displayed
as a black line. As may be expected, spectral distance within the bands was often
elevated further back in time (reflecting phylogenetic structure; more distantly related
species have more distant spectra) while regions with low phylogenetic signal
displayed more recent spectral differences (Figure 3, B). However, despite these high-
level patterns, we found a notable amount of diversity among the bands, both in the
overall distance between spectra and specific relationships with time (Figure 3, B).

Certain bands reflected large overall distances between species (Figure 3, A and C;
marked by purple dot) while others, though displaying increased phylogenetic signal,
displayed spectral distance distributions more similar to that observed across the full
spectrum (Figure 3, A and C; marked by yellow dot). Similarly, the conserved bands
displayed variable relationships with the overall phylogenetic tree (Robinson-Foulds
metric; Figure 3, C) wherein certain bands displayed strong similarities to the
phylogeny (purple dot) while others did not (yellow dot). These findings suggest that the
phylogenetic relationships of conserved bands are position-specific and reflect a
complex evolutionary landscape.

This last observation is even more enticing when we consider the broader-scale
molecular patterns present in Raman spectra (as represented by the colored boxes on
the bottom of Figure 3, A-C). For example, the band between ~700-800 cm™!
overlapped strongly with a region known to reflect nucleic acid abundance while
another at ~1,150-1,250 cm™ appeared to correlate with lipids [8]. Interestingly, these
two bands displayed quite different spectral and phylogenetic tree distance
distributions (Figure 3, A-C). Might it be possible to detect evolutionary relationships
unique to certain biomolecules from Raman spectral data?



Genomic features predict spectral variation
across species

Finally, we compared high-level genomic features (e.g. genome size, number of genes,
GC content; Figure 1, C) with spectral relationships. To do so, we calculated the
association between a given genomic statistic and per-species spectral
measurements within overlapping windows along the spectrum (width = 25

wavenumbers; see The approach and Notebook 1).
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Association between genome features and phylogeny.

(A) Comparison of phylogenetic signal (green) and ribosomal RNA
numbers along the spectrum. r = Pearson’s correlation.

(B) Barplot of correlation coefficients (calculated with Pearson’s
correlation) between phylogenetic signal and ribosomal RNA
number. GC content is highlighted in pink.

We found that several genomic features, such as the # of ribosomal RNAs (rRNAS),
displayed clear peaks that mirrored those we observed for phylogenetic signal (Figure
4, A). All of these comparisons yielded moderate to strong correlations (Figure 4, B),
the strongest being between rRNA # and phylogenetic signal (r = 0.66), followed
closely by genome size (r = 0.65). Additionally, we found that a linear model using all
genomic features could account for 76% of phylogenetic signal variation (R2 = 0.76; for
more details, see Notebook 1). These results suggest that basic genomic features can
account for a substantial portion of phylogenetic information present in Raman

spectra.


https://github.com/Arcadia-Science/raman-taxonomy/blob/main/01_notebooks/notebook-1.ipynb
https://github.com/Arcadia-Science/raman-taxonomy/blob/main/01_notebooks/notebook-1.ipynb

Key takeaways

« Raman spectra from clinically isolated bacteria and fungi vary as a function of

taxonomic classification (Figure 2).

» Phylogenetic relationships are unevenly distributed across the Raman spectrum;

specific spectral bands predict known phylogenetic relationships (Figure 3).
« Evolutionary diversification patterns vary as a function of Raman position (Figure 3).

« Phylogenetic signal in the Raman spectrum is strongly associated with high-level
genomic features, suggesting that Raman methods directly detect biochemical

information relevant to inferring phylogenetic relationships (Figure 4).

Implications

The set of analyses presented here support the idea that Raman spectral comparisons
will be broadly useful for phylogenetic and evolutionary studies.

However, the conclusions from this study come with several caveats. First, these data
are restricted to clinically isolated strains of bacteria and fungi. Future work is needed
to assess how applicable these findings are to other taxa (including multicellular
organisms). Furthermore, the Raman data we analyzed here came from researchers
measuring pooled samples [7]. This strategy may limit the true dynamic range of
species-level spectra, especially if the goal is to consider variation across individual
organisms, since this strategy essentially averages out signals across individuals.
Finally, the phylogenetic distances represented here are quite broad. It will be
enlightening to test the outer limits of Raman capabilities in taxonomic classification,
including but not limited to testing closely related species, measuring individual
organisms, assessing the effect of optical variants (e.g. autofluorescence), or exploring
variation in complex samples and tissues. These caveats also present many
opportunities for substantial exploration and development. For example, it may be the
case that we can uncover variable evolutionary patterns across spatially complex
samples (e.g. between cells or in subcellular regions of interest).

Finally, it is interesting to consider Raman as just one example of a certain type of
high-content phenotype that is useful in dissecting complex biological processes.
Raman spectra contain abundant information about the molecular structure and, as



we show here, phylogenetic context/evolutionary diversification patterns of biological
samples. Even within a single Raman experiment, we should be able to extract insight
into multiple dimensions of biology. Other types of biological measurements that
quantify complex biophysical/chemical/molecular processes, such as chlorophyll
fluorescence [17] or lifetime imaging, may also fit into this category. In general, we
contend that these observations point toward the power of combining high-
dimensional phenotypes with evolutionary inference to begin dissecting complex
biology in a generalizable, scalable, and hypothesis-free framework.
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