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Identifying candidate
accessory domains by
mining putative venom
protein fusions

Hoping to find proteins that alter physiology in useful ways, we
screened venom data sets for toxins fused to domains with
additional functionality. We identified candidates, but struggled to
infer any novel functions, and none seem well-conserved across
VENOMOUS Species.
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Purpose

Animal venoms are complex mixtures of mainly toxin proteins and peptides that can
broadly interfere with host physiology. While toxins are the most well-characterized
proteins in venoms, there is evidence that molecules facilitating toxin activity are
present as well. We decided to search for toxin-like or toxin proteins with extra
accessory domains with interesting functions (especially toxin-facilitating functions).
Based on evolutionary precedent in bacteria, we thought we might find novel
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accessory proteins/domains by searching for uncharacterized domains fused to
known toxins.

We developed a computational strategy to screen for potential gene fusion events and
identified 1,225 possible candidates across 145 species. The accessory portions of the
identified proteins are not well-conserved nor broadly conserved across venomous
species. We tried sequence-based analysis (BLASTp and HMM) but ran into issues
with annotating sequences of potential accessory domains. Most had only a very
general or low-confidence predicted function. We are working to refine functional

annotation as a whole, and this project further emphasized the need for new or
improved solutions to functional prediction.

While we don’t plan to follow up on this work, we're sharing our results in case they may
be useful for those studying venom biology or perhaps to the functional annotation
community.

. All associated code and metadata are available in this GitHub repository.

- You can access data from this pub on Zenodo, including FASTA files containing
representative sequences of the clustered toxin reference database, our custom

venom and tick toxin data set, and the accessory sequences of the toxin outliers.

We’ve put this effort on ice! X

#DeadEnd

We didn't find any intriguing “accessory” sequences in our search for longer-
than-typical toxins. We couldn’t functionally annotate most of our hits and we
didn’'t have a clear path forward to investigate others.

Learn more about the Icebox and the different reasons we ice projects.
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Background and goals

Venoms are secretions that an animal produces in a specialized gland that are
delivered to a target animal through a wound — they contain molecules that disrupt
normal physiology to assist feeding or defense [1]. A single venom can contain
hundreds of different toxins, and the ability to produce venom has evolved
independently more than 100 times across the tree of life [2]. There has been a lot of
convergent evolution across venom toxin proteins, which target key aspects of host
physiology (neurological functions, the cardiovascular system, homeostasis, etc.) [3]

[4].

Additional venom proteins are known to facilitate the action of toxins. For instance,
hyaluronidases are found in multiple venoms across species. Their hyaluronic acid
hydrolysis activity is described as a “spreading agent,” facilitating toxin diffusion
through the prey’s skin layers [5]. While a great deal of work has focused on venom
toxins, little is known about other functional molecules, particularly those with toxin-

facilitating functions, in venoms.

For bacterial botulinum neurotoxins produced by Clostridium species, non-toxin
proteins are known to be essential for the toxins’ activity. The neurotoxin-associated
proteins NTNH, HA, and ORFX play important roles to help the botulinum neurotoxin
survive the acidic environment of the digestive tract (NTNH) and cross the intestinal
barrier (HA). These neurotoxin-associated proteins have emerged from either toxin
gene duplication followed by divergence (NTNH) or gene fusion between clostridial
toxins and pre-existing HA and ORFX genes, which played other roles in Clostridium

[6].

By combining old parts to make something new, gene fusion is an efficient mechanism
of evolutionary innovation, generating proteins with complex structures and functions.
We sought to understand whether similar fusion scenarios between a toxin and
another accessory protein have happened in animal venoms, and whether such gene
fusions may have evolved convergently in multiple venoms.

There are no set and simple methods to identify gene fusion events and they are rarely
investigated at the protein level, but rather at the gene or transcript level. We anticipate
that any protein resulting from a fusion event between a toxin and another protein will
emerge as a length outlier among its toxin homologs. We screened 145 species’
venom transcriptome public data sets (that provide the protein content information of



venoms), to identify possible venom proteins that result from the association of a toxin
domain and an accessory domain as identified length outliers in their toxin category.
For such proteins, we further investigate the accessory sequences to determine (i)
whether they are found broadly across different venoms, (ii) whether they are
associated with multiple toxin types, and (iii) whether we can infer their functions.

While focused on gene fusion involving toxins in venoms, this work provides a general
framework for screening evolutionary innovation through gene fusion.

SHOW ME THE DATA: Access FASTA files containing representative sequences
of the clustered toxin reference database, our custom venom and tick toxin data

set, and the accessory sequences of the toxin outliers on Zenodo (DOI:
10.5281/zen0d0.8208984).

The approach

The overarching goal of this work is to determine whether proteins resulting from the
fusion of a toxin and another protein with an accessory function are found in venoms

and whether any accessory functions are convergent across species.

As we can infer predicted protein sequences from transcriptomes, we started by
generating a custom data set of venom proteins from available venom gland or salivary
gland transcriptomes (145 species) (Figure 1). In parallel, we clustered the toxin

reference database, a curated database that is part of UniProt’s animal toxin

annotation project (Tox-Prot) [7], and further refer to it as the “Venom proteins and
toxins” database. We next compared our custom data set to this database to find
sequence-based similarities between our custom data set proteins and the reference
toxins. We thereby generated groups of related proteins where each group contains at
least one protein from our custom data set and is characterized by a single toxin of the
toxin reference database. We then identified proteins emerging as length outliers
within each group independently. We continued the analysis by extracting the “non-
toxin” sequences (the putative accessory sequences) of each outlier. We further
clustered accessory sequences based on their sequence homology. We isolated a
representative sequence for each accessory cluster and conducted Pfam annotation
in an attempt to identify accessory domains. Finally, we investigated whether these
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accessory sequences are broadly shared or specific to venomous species or known

toxins.

Read about our methods in detail below or skip straight to “The results.”
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More detailed methodological information and code are available in the
GitHub repository (DOI: 10.5281/2en0d0.8299305) associated with this work.

Creating the custom venom transcriptome data
set

We first downloaded proteins or transcribed RNA data sets from venom glands or
salivary glands. We downloaded protein accessions or transcribed RNA files from
transcriptome shotgun assemblies (TSA) data sets for transcriptomes that are publicly
available and listed them in the metadata file,
“SRA_TSA_venom_gland_accessions.csv.”

Many species were associated with accessions with already-called predicted proteins.
For each of these species, we generated a FASTA file that contains all proteins in the
TSA, titled by the species name. Other species only had accessions with
transcriptome data without called proteins. After downloading the transcribed
sequences for each of these species’ individual FASTA files, we used TransDecoder
(version 5.7.0) [8] to obtain predicted ORFs/proteins.

Overall, we obtained protein sequences for the venom glands of 124 species and from
the salivary glands of 21 tick species (Figure 2). We generated Figure 2 using TimeTree
[9] and the phylogenetic tree viewer software FigTree (version 2018-11-25 - v1.4.4). We
pooled all the protein FASTA files into a single FASTA file that represents our custom
“venom proteins from transcriptomes” data set, the starting point for the rest of the
analysis.
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Figure 2

Phylogenetic tree of the species included in this work.

Species have been collapsed into larger groups of species
categories. We generated this tree using TimeTree and
available information regarding the different species. We
further edited the tree to collapse species into groups using
FigTree. Because no genetic information was available for
some species, this tree is actually missing two groups:
crustacean (one species: Xibalbanus tulumensis) and
bloodworm (one species: Glycera tridactyla).

Searching the custom venom proteins against
the UniProt venom proteins and toxins
reference database

In UniProt, the animal toxin annotation project contains a manually curated database
of proteins and toxins from various venoms. We used this curated database as our
reference toxin database and refer to it as the “venom proteins and toxins” database in
this work. As we expect this database to contain identical or similar homologs, we
clustered it using mmseqs2 easy-cluster (version14.7e284)[10][11][12], and kept only



one representative sequence per cluster to remove redundancy. Out of the original
7736 sequences of the “venom proteins and toxins” database, we obtained 1645
clusters and thus 1645 reference sequences. We then used mmseqs2 createdb 1O

generate a toxin reference database from these sequences.

We further used mmseqs2 easy-search [10][11][12] to search this query toxin reference
database against the target database: our custom venom proteins data set. During
this search, we aligned each venom protein to each representative sequence of the
toxin reference database to find possible matches and generate alignment scores.

Ultimately, 33,515 proteins from our custom venom proteins data set got at least one
hit in the toxin reference database.

Identifying protein length outliers in toxin
groups

As each protein from the custom venom protein data set may have yielded multiple
matches with the reference database, we kept only one hit per venom protein,
corresponding to the hit with the lowest E-value. Then we defined a “toxin group” as
any ensemble of all the venom proteins that hit the same representative toxin from the
toxin reference database. Consequently, each toxin group contains at least one venom
protein and is characterized by a reference toxin protein. Altogether, we generated 394
groups.

We filtered out any group that contained less than five venom protein sequences,
which left us with 236 groups. For each venom protein, we calculated its length ratio
compared to the group-associated reference toxin. We further used this length ratio
as the metric to identify length outliers within each cluster.

In each cluster, an outlier is defined as any venom protein that meets both of these
criteria:

« Soft outlier criteria: Length-ratio greater than Q3 + 1.5*IQ (Q3: 3rd quartile of the
group length-ratios distribution, 1Q: the interquartile range)

« Minimal ratio criteria: Length-ratio greater than 1.5



We identified 1,225 outlier sequences out of 33,207 sequences, which you can find in
the file, “WVenomproteins_ticks_toxins_outliers_June2023.csv.” We isolated the amino

acid sequences of these outliers to identify accessory sequences, as described below.

Extracting and clustering outlier accessory
sequences

We next identified and extracted the accessory sequences from the identified outlier
sequences. Accessory sequences are defined as any sequence that doesn’t match a
reference representative sequence from the toxin reference database. We used
DIAMOND (version 2.1.6) [13] to create DIAMOND individual databases of the 1,225
outlier sequences and of the toxin reference database, and to further perform a
protein BLAST (BLASTp) of the outlier sequences against the reference toxin
sequences.

Our strategy was to extract putative accessory sequences for every hit obtained for
each outlier sequence and generate a multi-FASTA file. For every DIAMOND hit against
the toxin reference sequences, we removed the portion of the venom protein that
aligned to the reference hit, leaving the non-aligned portion. This process could end
up creating different versions of similar or identical putative accessory portions of
proteins based on what aligned to each toxin reference hit.

Once identified, we clustered all accessory sequences based on sequence homology,
generating accessory sequence clusters from which we extracted a representative
sequence and annotated using the whole Pfam HMMs database.

We generated 2,566 accessory sequences from the 1,225 outlier sequences (as we
chose to keep any possible accessory sequences per outlier according to the
DIAMOND BLAST result). We further clustered these accessory sequences into
accessory sequence clusters (ASCs) and extracted one representative sequence for
each cluster using mmseqs2 easy-cluster (version14.7e284) [10][11][12]. We obtained

371 accessory sequence clusters.
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Analyzing accessory sequence clusters

We concluded this work by analyzing the ASCs we generated from our custom venom
protein data set. We sought to investigate the potential functions associated with
accessory sequences, as well as their distribution and conservation across species
and associated toxins.

Filtering out accessory sequence clusters annotated
with toxin-associated Pfam

We annotated the representative sequences from the 371 ASCs against the Pfam.hmm
database [14]. 288 sequences were assigned with one Pfam annotation. We decided
to consider any annotation with an E-value greater than 102 as having no Pfam
annotation, as this is a low-confidence annotation.

We identified a list of 481 Pfam annotations that are associated with toxins by
combining the lists of Pfams associated with the proteins of the “venom proteins and
toxins” database, and the curated list provided in a useful reference paper [15].
According to that list, 80 representative sequences of ASCs were annotated with a
toxin-associated Pfam. We filtered out these sequences and their associated ASCs for
the rest of the analysis.

Investigating the species and toxin diversity within
each accessory sequence clusters

For each accessory sequence cluster (ASC), we determined the number of species the
clustered accessory sequences originated from as well as the number of different
toxins the clustered accessory sequences have been associated with.

All code and metadata we generated and used for the pub are available in this
GitHub repository.
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Additional methods

We used ChatGPT to write some code and add comments to our code.

The results

SHOW ME THE DATA: Access FASTA files containing representative sequences
of the clustered toxin reference database, our custom venom and tick toxin data
set, and the accessory sequences of the toxin outliers on Zenodo (DOI:
10.5281/zen0d0.8208984).

Length-based outlier search identifies venom
toxin proteins that may have acquired
accessory sequences

Our strategy to identify possible fusion events between toxins and other genes is to
screen multiple venom transcriptome data sets for proteins that contain a known toxin

component and stand out as length outliers among their homologs.

To start this search, we compiled protein sequences from 124 species’ venom glands
and from the salivary glands of 21 tick species, collecting them in a custom “venom
proteins from transcriptomes” data set. In parallel, we generated a reference toxin
database by clustering the “VYenom proteins and toxins” database from UniProt’s

animal toxin annotation project (Tox-Prot) and keeping one single representative toxin

sequence per cluster. We used our custom protein data set from venoms to query the
reference toxin database. This allowed us to identify the proteins with known toxin
sequences in venoms and infer the types of toxin present. We identified 33,515 venom
toxin proteins in our custom data set and sorted them into 394 toxin groups based on
homology to a unique toxin from the reference database for each group. The size of
these groups ranged from one protein (68 groups) to 3,786 proteins (one group). Since
we wanted to find group outliers, we omitted any group that contained fewer than five
proteins and kept 236 groups.
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Figure 3

Size ratio distribution of proteins in toxin clusters.

Orange points represent length outliers. Hover over a point to

see the protein’s ID in our data set. View a static version or

open the interactive version in a new tab.

To identify length-based outliers, we considered the length ratio of each protein to its
group-associated reference toxin (see “Identifying_protein length outliers in toxin

groups” for how we define outliers). Figure 3 depicts the size distribution of proteins
across 10 different groups, four of which contained outliers. We identified 1,225 outliers
that come from 123 different groups, are part of around 30 different categories of
toxins, and involve 60 different species (Figure 4). 71% of the outliers were among tick

species, with patterns that seem consistent across multiple species, suggesting the
possibility that ticks have a higher proportion of gene fusions than other venomous

species.
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Figure 4

Map of toxin outliers and associated species.

This interactive figure shows the outliers we found in different species (x-

axis) within each group where outliers have been found (y-axis). Each group

is identified by its associated reference toxin and we've colored data points

by taxon. Hover over a point to see each protein sequence’s taxon, species,



functional category, and UniProt ID. View a static version or open the

interactive version in a new tab.

Altogether, we have been able to identify toxins that are significantly longer than most
of their homologs. All these outliers are candidates for further investigation to learn
about the non-toxin portion of their sequence, which we refer to as the “accessory
sequence.”

Pfam annotation of accessory sequences offers
limited information about potential function

After BLASTing our outlier sequences against UniProt’s curated toxin database, we
extracted each outlier’'s associated accessory sequences (the protein sequence
minus the segment or segments that align with a toxin). Consequently, we sometimes
obtained multiple accessory sequences for a given outlier. Eventually, we generated
2566 accessory sequences and used sequence homology to cluster them into 371
accessory sequence clusters, further referred to as ASCs (see “Extracting and

clustering_ outlier accessory sequences” for more details). Cluster size ranges from

one accessory sequence (110 clusters) to 170 accessory sequences (one cluster)
(Figure 5).

Since the goal of this work was to find novel protein functions that modulate host
physiology, we next sought to understand what each of our putative toxin accessory
domains does in the hope that something useful or intriguing might pop out at us. We
annotated one representative accessory sequence for each cluster using HMMER
(version 3.3.2) and the whole Pfam database [14]. 125 representative sequences
obtained a Pfam annotation with an E-value lower than 1075, our chosen threshold to
select for real matches with confidence. Relying on the UniProt-curated “Venom
proteins and toxins” database and additional annotations [15], we generated a list of

Pfam annotations that are known to be associated with toxins. Using this list, we
further identified which accessory sequence clusters are annotated as toxin-
associated, non-toxin-associated, or had no Pfam annotation (Figure 5). Overall, 80
ASCs were annotated as toxin-associated, suggesting that our workflow did not fully
remove all toxin sequences, either because a single toxin can contain multiple toxin
domains and we missed some or that the “toxin” portion of some sequences extends
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beyond the area that aligned with the reference sequence. We omitted these ASCs for
the rest of the analysis.

291 accessory sequence clusters had either no Pfam annotation or a non-toxin
annotation. 45 of them have a non-toxin annotation, and these span 30 different Pfam
annotation categories (see these data in “Table-

2_Summary_metrics_accessory_sequence_clusters_.csv” on GitHub). Most Pfam

annotations are “domains” (collections of related sequence regions that form a distinct
structural unit), some are “families” (collections of related sequence regions that may
contain one or more domains, but where there is insufficient evidence to support
subdivision), and some are repeats.

While multiple annotations point to domains associated with signaling, signal
transduction, or protein-protein interactions, these annotations are pretty general and
hard to interpret, especially as they indicate functions that can also be found in toxins.

Overall, it is challenging to obtain reliable information about the potential functions
carried out by accessory sequences through Pfam annotation. Another solution could
be to perform a protein BLAST against the non-redundant protein database [16]. This
could identify sequence matches between the accessory sequences and annotated
non-toxin proteins, informing us of the nature and function of the accessory sequence.
However, our putative accessory sequences are portions of proteins that are very likely
to be present in the non-redundant database (or homologs from closely related
species), so our queries would likely just align with those full-length proteins.

Altogether, current sequence-based annotation had limited success in identifying
reliable annotated domains and functions for the accessory sequences, making it
challenging to conclude that these toxin length outliers emerge from an actual gene

fusion.
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Distribution of putative accessory sequence cluster
length.

This histogram shows how many clusters (y-axis) contain a
given number of accessory sequences (x-axis).

Cross-species convergence of accessory
sequences is limited to closely related species

The functional annotations of the putative accessory sequences didn’t contain any
strong clues, but we thought we might zero in on exciting functionality by determining
which of these sequences are present across venoms from many species and types of
toxins (and therefore likely important). Such convergent evolution of accessory
sequences would suggest an evolutionary benefit, pointing us to globally important

accessory functions in venoms.

For 224 of our 291 clusters, we noticed that the accessory sequence derived from a
single outlier sequence (but not from the same outlier for all clusters). This is because
we decided to keep all the possible accessory sequences for each outlier based on
alignment results, ensuring that we investigated all possible accessory sequences and
increasing our chances of identifying something of interest. For some outliers, this led

us to include multiple very similar accessory sequences, some differing by only a few



amino acids. Each of these 224 clusters is inherently associated with a single species
and a single toxin, and they don’t provide any workable information regarding
convergence of accessory sequences so we removed them for the rest of the analysis.
However, the fact that 77% of the accessory sequence clusters are associated with
individual outlier proteins suggests that convergence of accessory sequence is likely

uncommon.

We calculated the number of different species represented in each of the remaining
67 clusters. The number of different species identified per cluster ranges from one
species (20 clusters) to 10 species (one cluster) (Figure 6 and “Table-

1_Accessory_clusters_non_Toxin_Pfam_information.xlsx” on GitHub). 16 clusters are

associated with more than three species. When multiple species are present, they are
part of the same group. For instance, in 11 clusters with accessory sequences from
more than three species, all the species are ticks. In four clusters, the only species
represented are snakes, sometimes from the same family (e.g., cluster 61 contains

sequences from eight species across four genera of Viperidae snakes).

Overall, we found that accessory sequences that cluster together are usually from the
same species or group of species, suggesting some low amount of convergence of
accessory sequences across closely related species, and very little or no convergence
across a broader range of phylogenetically distant species.

Only one cluster (cluster 19) contained two outliers from species from different groups:
the spider species Latrodectus tredecimguttatus and the snake species Bungarus
multicinctus. These outlier sequences are associated with the same toxin, a
galactose-specific lectin called nattectin. Protein BLAST of the accessory sequence
yields the best matches with other lectin proteins in spiders (macrophage mannose
receptor or secretory phospholipase A2 receptor) with best identity matches of 59%
and 52%. This suggests that the whole protein is part of the lectin family for both L.
tredecimguttatus and B. multicinctus, including the portion we thought could have
been an accessory sequence. Moreover, the transcriptome data we obtained for B.
multicinctus is the only data set that wasn'’t restricted to the venom gland and
contained protein information from other tissues. As lectins represent a major protein
family and they’re present in many tissues and not restricted to toxin activity, it is
possible that non-toxin lectins from this species have been incorrectly assigned to a
toxin group.


https://github.com/Arcadia-Science/toxin-facilitators/blob/v2.0pub/results/Tables/Table-1_Accessory_clusters_non_Toxin_Pfam_information.xlsx
https://github.com/Arcadia-Science/toxin-facilitators/blob/v2.0pub/results/Tables/Table-1_Accessory_clusters_non_Toxin_Pfam_information.xlsx
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Figure 6

Summary of characteristic metrics of
accessory sequence clusters.

Histogram of the number of different species per
accessory sequence cluster.

While accessory sequences appear to be species-specific, this doesn’t exclude the
possibility that they can be shared across different toxins. To test this hypothesis, we
looked at each of the 67 ASCs and determined how many different toxins are

associated with each accessory sequence (see “Table-

1_Accessory_clusters_non_Toxin_Pfam_information.xlsx” on GitHub). Strikingly, most of

the accessory sequence clusters are associated with single toxins (61 clusters). The
highest number of different toxins found in a cluster is just two (six clusters). For these
clusters, the identified toxins are from the same toxin family (clusters 48 and 4:
veficolin, cluster 56: protease inhibitor, clusters 32 and 60: thrombin-like enzyme,
cluster 59: venom serine protease). Altogether, this undeniably shows the toxin-
specificity of accessory sequences.

Overall, by investigating the diversity of species and toxins found in each ASC, we've
demonstrated that there is little convergence of toxin-associated accessory
sequences across species and toxins.


https://github.com/Arcadia-Science/toxin-facilitators/blob/v2.0pub/results/Tables/Table-1_Accessory_clusters_non_Toxin_Pfam_information.xlsx
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Key takeaways

In this work, we sought to identify conserved venom proteins with interesting toxin-
facilitating functions. Our strategy relied on screening venom transcriptomes to
identify toxin proteins potentially fused with extra domains, and then looking for
patterns in the distribution or conservation of these accessory domains across a
broad range of species.

While our approach identified multiple candidates, analysis of these accessory
sequences showed that they are poorly conserved across distant venomous species
and highly specific to the toxin they are associated with, refuting the hypothesis that
venomous species share fused domains that facilitate the action of toxins.

Our ability to interpret the potential function of these candidate accessory sequences
was limited. Currently available sequence-based annotation methods were insufficient

for our purposes, highlighting the need for alternative or improved annotation tools.

Finally, ticks stood out as the organisms with the most length outliers, and their
accessory sequences appear to be conserved across tick species. This strongly
suggests that ticks have evolved specific sets of toxins that are divergent from other
venomous species and that could carry out different or modified functions.

Next steps

We found poor conservation of toxin-associated accessory sequences, and couldn’t
confidently identify specific functions associated with these sequences. Because of
current limitations in computationally predicting protein function, we are not pursuing
this project further. However, others interested in this subject might consider a couple

of directions to take the project one step further.

One obvious direction would be to develop better approaches to characterize the
functions associated with identified accessory sequences. An alternative approach to
sequence-based annotation that would be particularly relevant in this field would be
structural analysis of the toxin and their accessory sequences, as protein structure is
crucial for their proper function, especially for proteins that are known to interact with
other proteins or molecules. This could reveal whether the accessory portion of the
protein has a similar structure to other proteins with known functions. Comparing



structures of length outliers to structures of homologs without extensions could also
show how the additional sequence affects the overall structure of the toxin and might
hint at how it impacts activity.

Because our data sets were mostly associated with snakes, the most-studied
venomous animals, this work is biased toward snake species. Venomous species are
incredibly abundant on Earth, so it could be informative to extend this analysis to less
studied venoms as more sequencing data becomes available.

Finally, our project assumed that some toxin-facilitating functions would come from
additional amino acids fused to toxins that can also exist in a standalone context. Our
findings don’t refute the possibility that broadly conserved facilitating functions could
exist without being cleanly segmented within toxin sequences. Amino acids that
confer additional function may be indissociable from the toxin sequence. Identifying
whether some toxins have more subtly evolved added functionality would require an
in-depth structural analysis of toxins and analysis of protein-protein interactions

between toxins and their potential targets.
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